arithmetic, geometric, and harmonic mean The following data set is taken from 11
ID: 3039921 • Letter: A
Question
arithmetic, geometric, and harmonic mean
Explanation / Answer
Addition
K
0.00043
0.0061
0.000025
0.00012
0.000001
0.0071
0.0000091
0.0022
0.000042
0.00087
0.000035
0.0169321
Arithmetic mean: The sum of all of the numbers in a list divided by the number of items in that list
= 0.016932/11 = 0.001539
geometric mean is defined as “the nth root of the product of n numbers.”
= 11 [(0.00043)( 0.0061)…( 0.000035)]
= 11 (1.43047 * 10^-42)
= 1.57*10^-4 = 0.000157
K
0.00043
0.0061
0.000025
0.00012
0.000001
0.0071
0.0000091
0.0022
0.000042
0.00087
0.000035
1/K
2325.58
163.93
40000
8333.33
1000000
140.85
109890.11
454.55
23809.52
1149.43
28571.43
harmonic mean is the reciprocal of the arithmetic mean of the reciprocals
= n / [(1/x1)+(1/x2)..+(1/xn)]
= 11/ [(1/0.00043)+(1/0.0061)+..+(1/0.000035)]
= 11/ 1214838.7
= 9.056*10^-6
= 0.000009056
Addition
K
0.00043
0.0061
0.000025
0.00012
0.000001
0.0071
0.0000091
0.0022
0.000042
0.00087
0.000035
0.0169321
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.