Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The Bureau of Meteorology of the Australian Government provided the mean annual

ID: 3023928 • Letter: T

Question

The Bureau of Meteorology of the Australian Government provided the mean annual rainfall (in millimeters) in Australia 1983–2002 as follows (http://www.bom.gov.au/ climate/change/rain03.txt)

499.2, 555.2, 398.8, 391.9, 453.4, 459.8, 483.7, 417.6, 469.2, 452.4, 499.3, 340.6, 522.8, 469.9, 527.2, 565.5, 584.1, 727.3, 558.6, 338.6

Compute a 90% prediction interval on the rainfall for the next year. Compare the length of the prediction interval with the length of the 90% confidence interval on the population mean. Round the answers to 3 decimal places.

Explanation / Answer

The Bureau of Meteorology of the Australian Government provided the mean annual rainfall (in millimeters) in Australia 1983–2002 as follows (http://www.bom.gov.au/ climate/change/rain03.txt)

499.2, 555.2, 398.8, 391.9, 453.4, 459.8, 483.7, 417.6, 469.2, 452.4, 499.3, 340.6, 522.8, 469.9, 527.2, 565.5, 584.1, 727.3, 558.6, 338.6

Compute a 90% prediction interval on the rainfall for the next year. Compare the length of the prediction interval with the length of the 90% confidence interval on the population mean. Round the answers to 3 decimal places.

Regression Analysis

0.098

n

20

r

0.313

k

1

Std. Error

88.142

Dep. Var.

rainfall

ANOVA table

Source

SS

df

MS

F

p-value

Regression

15,219.5306

1  

15,219.5306

1.96

.1786

Residual

139,841.0589

18  

7,768.9477

Total

155,060.5895

19  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=18)

p-value

90% lower

90% upper

Intercept

435.5232

40.9446

10.637

3.43E-09

364.5227

506.5236

t

4.7840

3.4180

1.400

.1786

-1.1430

10.7110

Predicted values for: rainfall

90% Confidence Interval

90% Prediction Interval

t

Predicted

lower

upper

lower

upper

Leverage

21

535.987

464.986

606.987

367.458

704.516

0.216

90% prediction interval on the rainfall for the next year =(367.458, 704.516)

Confidence Interval Estimate for the Mean

Data

Sample Standard Deviation

90.3387

Sample Mean

485.755

Sample Size

20

Confidence Level

90%

Intermediate Calculations

Standard Error of the Mean

20.2004

Degrees of Freedom

19

t Value

1.7291

Interval Half Width

34.9291

Confidence Interval

Interval Lower Limit

450.826

Interval Upper Limit

520.684

90% confidence interval on the population mean =(450.826, 520.684)

90% prediction interval on the rainfall for the next year =(367.458, 704.516)

The length of 90% prediction interval on the rainfall for the next year is large than the 90% confidence interval on the population mean.

Regression Analysis

0.098

n

20

r

0.313

k

1

Std. Error

88.142

Dep. Var.

rainfall

ANOVA table

Source

SS

df

MS

F

p-value

Regression

15,219.5306

1  

15,219.5306

1.96

.1786

Residual

139,841.0589

18  

7,768.9477

Total

155,060.5895

19  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=18)

p-value

90% lower

90% upper

Intercept

435.5232

40.9446

10.637

3.43E-09

364.5227

506.5236

t

4.7840

3.4180

1.400

.1786

-1.1430

10.7110

Predicted values for: rainfall

90% Confidence Interval

90% Prediction Interval

t

Predicted

lower

upper

lower

upper

Leverage

21

535.987

464.986

606.987

367.458

704.516

0.216

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote