Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Stanford–Binet IQ Test scores are normally distributed with a mean score of 100

ID: 3022598 • Letter: S

Question

Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard deviation of 16.

Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score.

Find the probability that a randomly selected person has an IQ test score. (Round answers to 4 decimal places.)

Suppose you take the Stanford–Binet IQ Test and receive a score of 136. What percentage of people would receive a score higher than yours? (Answer as a percentage, rounded to two decimal places, without the percentage (%) symbol.)

(b)

Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score.

Explanation / Answer

b)

z = (x - u)/o [ANSWER]

*******************

c)

1.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    140      
u = mean =    100      
          
s = standard deviation =    16      
          
Thus,          
          
z = (x - u) / s =    2.5      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.5   ) =    0.006209665 [ANSWER]

************

2.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    88      
u = mean =    100      
          
s = standard deviation =    16      
          
Thus,          
          
z = (x - u) / s =    -0.75      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.75   ) =    0.226627352 [ANSWER]

**************

3.

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    72      
x2 = upper bound =    128      
u = mean =    100      
          
s = standard deviation =    16      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.75      
z2 = upper z score = (x2 - u) / s =    1.75      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.040059157      
P(z < z2) =    0.959940843      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.919881686   [ANSWER]

*****************

4.

z1 = lower z score =    -1.5      
z2 = upper z score =     1.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.066807201      
P(z < z2) =    0.933192799      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.866385597   [ANSWER]  
  


***************

D)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    136      
u = mean =    100      
          
s = standard deviation =    16      
          
Thus,          
          
z = (x - u) / s =    2.25      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.25   ) =    0.012224473 = 1.22% [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote