Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 6. (1 point) Fill in the blanks below appropriately to obtain a proof fo

ID: 3019702 • Letter: P

Question

Problem 6.

(1 point) Fill in the blanks below appropriately to obtain a proof for the expression

(1+tan(A)+sec(A))(1+cot(A)csc(A))=2

Proof:

(1+tan(A)+sec(A))(1+cot(A)csc(A))

=1+cot(A)csc(A)+tan(A)+tan(A)cot(A)tan(A)csc(A)+sec(A)+sec(A)cot(A)sec(A)csc(A)=tan(A)csc(A)+tan(Atan(A)csc(A)+sec(A)+sec(A)c

=tan(A)+ _____sec(A)

______+2

=_____ /cos(A)+ ______/ /sin(A)1/(sin(A)/sin(A)_____)+2

=_____ /(sin(A)cos(A) ]+2

=____

/sin(A}cos(A)]+2

=2

Your goal is to fill in the blanks with appropriate formulas to make adjacent expressions equal.
There may be other ways to prove the original identity but this problem requires the correct logic using this approach.

Hint: At each step, look to see which terms might cancel or combine.

Explanation / Answer

(1+tan(A)+sec(A))(1+cot(A)csc(A))=2

Proof:

(1+tan(A)+sec(A))(1+cot(A)csc(A))

=1+cot(A)csc(A)+tan(A)+tan(A)cot(A)tan(A)csc(A)+sec(A)+sec(A)cot(A)sec(A)csc(A)

= tan(A)csc(A)+tan(Atan(A)csc(A)+sec(A)+sec(A)c

= tan(A)+ cot(A) sec(A) csc(A) +2

= sin(A) /cos(A)+ cos(A) /sin(A)1/(sin(A)cos(A)) + 2

=[ sin^(A)+cos^2(A) - 1 /(sin(A)cos(A) ]+2

=[1-1] /sin(A}cos(A)]+2

= 2

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote