Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

i.Radius of bends i.Deflection angle Requirements Comment on each portion of the

ID: 2995666 • Letter: I

Question

i.Radius of bends

i.Deflection angle

Requirements

Comment on each portion of the function to clearly state what it does. Ask further information under chegg comment if necessary. Thank you. Send file to chibitaruo@yahoo.com and answer on chegg. I'll reward the points accordingly depending on how accurate the answer is.

Also you can use the following example to check data:

Length = 2000 ft.

Diameter = 6 in.

Flow rate = 10 cfs.

Pressure Drop = 1553 psi

Fluid = water

Temperature = 150 F

Elevation Change = 60 ft.

Pipe Material = Galvanized Iron

Number of 90 degree smooth bends, flanged = 2
Radius of 90 degree bends = 60 in.

Number of miter bends = 3

Deflection angle of miter bends = 30 degrees

Number of fully open globe valves = 1

Number of fully open gate valves = 1

This is for questionbreaker

Explanation / Answer

function[d Hp]=flowrate()
g=32.2 %gravity
prompt='what is the flow rate in cfs ';
Q=input(prompt);
prompt='what is the length of pipe in ft ';
l=input(prompt);
prompt='what is the pressure drop in psi ';
P=input(prompt);
prompt='what is the temperature of pipe in F ';
T=input(prompt);
prompt='what is the elevation rise in ft ';
z=input(prompt);
prompt='what is the type of material in 1= galvanised_steel ';
mat_typ=input(prompt);
prompt='what is the number of 90 degree bends ';
bend_nbr=input(prompt);
prompt='what is the nimber of mitre bends ';
bend_mitre=input(prompt)
prompt='what is the radius of 90 degree bends in ft ';
bend_rad=input(prompt)
prompt='what is deflection angle of mitre bends in degrees ';
bend_ang=input(prompt)
prompt='what is the number of fully opened globe valves ';
valve_gl=input(prompt)
prompt='what is the number of fully opened gate valves ';
valve_gt=input(prompt)
if mat_typ==1
k=5*10^-4*12; %surface roughness
  
end
%assume friction factor
f=0.0195

A=pi/4/12^2; %constant
P1=P*2.3067; % converting it to foot of water

T1=(T-32)*5/9+273; %temp C
mu=2.414*10^-5*10^(247.8/(T1-140));
rho=62.4; %density

%solving for V
k1=0.14 %from table
k2=0.1 % from table
dif=1;
while dif>0.01
C=f*l/2*Q^2/g/6*12/A^2+valve_gt^2*Q^2/2/g*0.15/A^2+10*valve_gl*Q^2/2/g/A^2+k1*Q^2/2/g*bend_nbr/A^2+k2*Q^2/2/g*bend_mitre/A^2
%x=solve(P==f*l*Q^2/2/g/d*12/A^2+valve_gt*Q^2^2/2/g*0.15/A^2+10*valve_gl*Q^2/2/g/A^2+k1*Q^2/2/g*bend_nbr/A^2+k2*Q^2/2/g*bend_mitre/A^2,'Q');
d=(C/P1)^0.25
v=Q/A/d^2;
  
Re=1000*v*3048*d/12*0.3048/mu;
e=k/d;
if Re<=4000;
f1=64/Re;
else Re>4000
syms x
%f1=solve(1/x^(0.5)==-2*log10(e/3.7+2.51/Re/x^(0.5)),'x')
f1=0.01955 % from graph
end
dif=abs(f-f1);
f=f1;
end
disp('flow rate')

disp('power used by motor')
disp(Hp)