Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(7@) Which of the following sets of vectors span either R2 or R3, depending on w

ID: 2968976 • Letter: #

Question

(7@)

Which of the following sets of vectors span either R2 or R3, depending on which vector space the set belongs to?

A. [ 7     [ -5        [ 9

      -6        3          -8

      0]  ,     0]    ,    0]

____________________________-

B.  [ 5            [6                 [-1

        2              -4                 2

        -7]       ,     2]    ,           -5]  

_________________________

C.  [ 4            [   4

       -8]    ,         -8]

________________________


D.  [ 0       [2

        0],     - 6]

_______________________

E.   [0             [2           [-1

        0]   ,         -6]   ,      -5]

_____________________

F.        

       [7         [-5         [9

      0           3             -8

     6]     ,     2]      ,     0]

__________________

Please give the letters and a brief explanation why?

Explanation / Answer

for a set S which is subset of vector space V to span a vector space V,any element v of vector space V should be expressed as a linear combination of elements of S

A)

[ 7 [ -5 [ 9

-6 3 -8

0] , 0] , 0] cannot span R3 as z camponent is always zero for the linear combination of above elements

for (x,y) belonging to R2,there exists k1,k2,k3 such that

(x,y) = k1*(7,-6,0)+k2(-5,3,0)+k3*(9,-8,0)

therefore it spans R2

B. [ 5 [6 [-1

2 -4 2

-7] , 2] , -5] it spans R3 as the elements are linearly independent

since for (5,2,-7) = k1*(6,-4,2) + k2*(-1,2,-5) k1=k2=0

C. [ 4 [ 4

-8] , -8] is linearly dependent .it spans only R

D. [ 0 [2

0], - 6] is linearly dependent spans only R


E. [0 [2 [-1

0] , -6] , -5] spans R2 as any element (x,y) can be expressed as k1*(2,-6) + k2*(-1,-5)


F.

[7 [-5 [9

0 3 -8

6] , 2] , 0] is linearly independent and spans R3