Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(a) Every set of four linearly independent vectorsin R4is a basisof R4. (b) Ever

ID: 2940403 • Letter: #

Question

(a) Every set of four linearly independent vectorsin R4is a basisof R4.

(b) Every set of linearly independent vectorsin R4is a basis ofsome subspace of R4.

(c) If W =Span{v1; v2; v3}, then{v1; v2; v3}must be abasis of W.

(d) If R3 =Span{v1; v2; v3}, then{v1; v2; v3}must be abasis of R3.

(e) No set of five vectors inR4is a basisof R4.

(f) No set of four vectors inR5can span asubspace of dimension 3.

(g) Suppose W =Span{v1; v2; v3}is a subspaceof dimension 2. Then {v1; v2}is a basisof W.

Explanation / Answer

x.P5gn="left" style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; list-style-type: none; list-style-position: initial; list-style-image: initial; border-collapse: collapse; font-family: AdvQP_PSTimsR; font-size: 12px; line-height: 18px; ">For each of the following statements, determine whether the statement is true or false, and justify your conclusion. That is, if the statement is true, refer to a theorem or other fact that shows it is true; if it is false, give a counterexample