The dataset lists the auction success rate for Item A (Column: SuccessRate-A), a
ID: 2926950 • Letter: T
Question
The dataset lists the auction success rate for Item A (Column: SuccessRate-A), and for Item B (Column: SuccessRate-B) at eBay. You wonder if both rates are equal to 0.70, respectively. Please write a null hypothesis and alternative hypothesis for each item. Then, use SPSS for one sample t-test. Please briefly interpret the testing result.
Day SuccessRate-A SuccessRate-B 1 0.7895 0.5789 2 0.8800 0.8800 3 0.8182 0.7273 4 0.6818 0.6364 5 0.6957 0.6957 6 0.7959 0.6531 7 0.6462 0.5077 8 0.6842 0.6184 9 0.6744 0.6124 10 0.6522 0.5725 11 0.7059 0.6975 12 0.6595 0.6293 13 0.7371 0.6743 14 0.7213 0.6995 15 0.6828 0.6564 16 0.5613 0.5032 17 0.7394 0.7183 18 0.7117 0.6396 19 0.7300 0.6900 20 0.5915 0.5362 21 0.6907 0.6667 22 0.6770 0.6433 23 0.7032 0.6643 24 0.7554 0.7038 25 0.7574 0.7346 26 0.6798 0.6601 27 0.5342 0.4958 28 0.7872 0.7748 29 0.7952 0.7714 30 0.7632 0.7394 31 0.7708 0.7569 32 0.7763 0.7451 33 0.7519 0.7245 34 0.7145 0.6598 35 0.7167 0.6771 36 0.7657 0.7336 37 0.7648 0.7378 38 0.7425 0.7180 39 0.7373 0.7066 40 0.6881 0.6823Explanation / Answer
Descriptive statistics:
SuccessRate-A
count 40
mean 0.718263
sample variance 0.004500
sample standard deviation 0.067081
minimum 0.5342
maximum 0.88
range 0.3458
null, Ho: =0.7
alternate, H1: !=0.7
level of significance, = 0.05
from standard normal table, two tailed t /2 =2.023
since our test is two-tailed
reject Ho, if to < -2.023 OR if to > 2.023
we use test statistic (t) = x-u/(s.d/sqrt(n))
to =0.718-0.7/(0.067081/sqrt(40))
to =1.697
| to | =1.697
critical value
the value of |t | with n-1 = 39 d.f is 2.023
we got |to| =1.697 & | t | =2.023
make decision
hence value of |to | < | t | and here we do not reject Ho
p-value :two tailed ( double the one tail ) - Ha : ( p != 1.6971 ) = 0.0976
hence value of p0.05 < 0.0976,here we do not reject Ho
ANSWERS
---------------
null, Ho: =0.7
alternate, H1: !=0.7
test statistic: 1.697
critical value: -2.023 , 2.023
decision: do not reject Ho
p-value: 0.0976
----------------------------------------------------------------------------------------
Descriptive statistics: SuccessRate-B
count 40
mean 0.673065
sample variance 0.006242
sample standard deviation 0.079005
minimum 0.4958
maximum 0.88
range 0.3842
null, Ho: =0.7
alternate, H1: !=0.7
level of significance, = 0.05
from standard normal table, two tailed t /2 =2.023
since our test is two-tailed
reject Ho, if to < -2.023 OR if to > 2.023
we use test statistic (t) = x-u/(s.d/sqrt(n))
to =0.67306-0.7/(0.079005/sqrt(40))
to =-2.157
| to | =2.157
critical value
the value of |t | with n-1 = 39 d.f is 2.023
we got |to| =2.157 & | t | =2.023
make decision
hence value of | to | > | t | and here we reject Ho
p-value :two tailed ( double the one tail ) - Ha : ( p != -2.1566 ) = 0.0373
hence value of p0.05 > 0.0373,here we reject Ho
ANSWERS
---------------
null, Ho: =0.7
alternate, H1: !=0.7
test statistic: -2.157
critical value: -2.023 , 2.023
decision: reject Ho
p-value: 0.0373
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.