show some work in support of your answers to receive full credit. Do not simply
ID: 2926631 • Letter: S
Question
Explanation / Answer
PART A.
Given that,
population mean(u)=3200
standard deviation, = sqrt(1000) = 31.6228
sample mean, x =3222.5
number (n)=12
null, Ho: <3200
alternate, H1: >3200
level of significance, = 0.05
from standard normal table,right tailed z /2 =1.645
since our test is right-tailed
reject Ho, if zo > 1.645
we use test statistic (z) = x-u/(s.d/sqrt(n))
zo = 3222.5-3200/(31.6228/sqrt(12)
zo = 2.46475
| zo | = 2.46475
critical value
the value of |z | at los 5% is 1.645
we got |zo| =2.46475 & | z | = 1.645
make decision
hence value of | zo | > | z | and here we reject Ho
p-value : right tail - ha : ( p > 2.46475 ) = 0.00686
hence value of p0.05 > 0.00686, here we reject Ho
ANSWERS
---------------
null, Ho: =3200
alternate, H1: >3200
test statistic: 2.46475
critical value: 1.645
decision: reject Ho
p-value: 0.00686
Given that,
Standard deviation, =31.6228
Sample Mean, X =3222.5
Null, H0: =3200
Alternate, H1: !=3200
Level of significance, = 0.05
From Standard normal table, Z /2 =1.96
Since our test is two-tailed
Reject Ho, if Zo < -1.96 OR if Zo > 1.96
Reject Ho if (x-3200)/31.6228/(n) < -1.96 OR if (x-3200)/31.6228/(n) > 1.96
Reject Ho if x < 3200-61.980688/(n) OR if x > 3200-61.980688/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 12 then the critical region
becomes,
Reject Ho if x < 3200-61.980688/(12) OR if x > 3200+61.980688/(12)
Reject Ho if x < 3182.10771655 OR if x > 3217.89228345
Implies, don't reject Ho if 3182.10771655 x 3217.89228345
Suppose the true mean is 3230
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(3182.10771655 x 3217.89228345 | 1 = 3230)
= P(3182.10771655-3230/31.6228/(12) x - / /n 3217.89228345-3230/31.6228/(12)
= P(-5.24633291 Z -1.32633291 )
= P( Z -1.32633291) - P( Z -5.24633291)
= 0.0924 - 0 [ Using Z Table ]
= 0.0924
For n =12 the probability of Type II error is 0.0924
POWER OF TEST = 1 - BETA = 1 - 0.0924 = 0.9076
PART C.
given that,
standard deviation, =31.6228
sample mean, x =3222.5
population size (n)=12
level of significance, = 0.05
from standard normal table, two tailed z /2 =1.96
since our test is two-tailed
value of z table is 1.96
we use CI = x ± Z a/2 * (sd/ Sqrt(n))
where,
x = mean
sd = standard deviation
a = 1 - (confidence level/100)
Za/2 = Z-table value
CI = confidence interval
confidence interval = [ 3222.5 ± Z a/2 ( 31.6228/ Sqrt ( 12) ) ]
= [ 3222.5 - 1.96 * (9.129) , 3222.5 + 1.96 * (9.129) ]
= [ 3204.608,3240.392 ]
PART D.
Compute Sample Size
n = (Z a/2 * S.D / ME ) ^2
Z/2 at 0.05% LOS is = 1.96 ( From Standard Normal Table )
Standard Deviation ( S.D) = 31.6228
ME =15
n = ( 1.96*31.6228/15) ^2
= (61.981/15 ) ^2
= 17.074 ~ 18
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.