Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Principal Components Analysis as an unsupervised linear dimensionality reduction

ID: 2922187 • Letter: P

Question

Principal Components Analysis as an unsupervised linear dimensionality reduction framework achieves impressive performance many among state-of-art techniques. An original dataset has been shown in Table 1. Questions (30 marks) • Calculate the covariance matrix of data as shown in the Table 1. • Calculate eigenvectors and eigenvalues of the covariance matrix. • Calculate the proportion of total population variance explained by the first two components

Table 1: An Original Dataset Attributes 1 Attributes 2 Attributes 3 ID 3 -3 6 3 7 1

Explanation / Answer

here we used the R to do the whole calculate thye whole distribution ...

R codes

  x1=c(-1,-2,-3,1,2,3,1)
x2=c(-1,-1,-2,1,1,2,2)
x3=c(1,4,-2,1,2,1,4)
a=var(x1)
b=var(x2)
c=var(x3)
d=cov(x1,x2)
e=cov(x1,x3)
f=cov(x2,x3)
m=matrix(c(a,d,e,d,b,f,e,f,c),ncol=3,byrow=T)
m

var-cov matrix is

4.809524 3.285714 1.238095
3.285714 2.571429 1.476190
1.238095 1.476190 4.285714

eigen values and eigen vectors

R-code

a=eigen(m)
a

output

$values
[1] 8.0850820 3.4255032 0.1560815

$vectors
[,1] [,2] [,3]
0.7127562 - 0.4373436 0.5483696
0.5434668 -0.1499041 -0.8259374
0.4434213 0.8867127 0.1308366

population varinace explained by the first two principal components

r code

b=a$values
b
c=sum(b)
d=(b[1]+b[2])/c
d

out-put

  0.9866216

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote