logliklihood function Saved to this PC References Mailings Review View Help Tell
ID: 2907218 • Letter: L
Question
logliklihood function Saved to this PC References Mailings Review View Help Tell me what you want to do 1Normal 1 No Spac.. Heading 1 Heading 2Title Paragraph Styles Let tm, Immm denote an adaptive progressive Type-Il censored sample, with Rm) being the progressive censoring scheme. The maximum likelihood function based on this adaptive progressively type-II censored sample by taking In for the likelihood function is then In L(0: t)-Constant +??-1 In--Travnin 1-2 ??-1 in ( tnt ?(int,n-p)-In ( 1 + eExplanation / Answer
# redefine log likelihood
l2 = function(para){
beta = matrix(NA, row = len(para) - 1, col = 1)
beta[,1] = para[-length(para)]
sigma = para[[length(para)]]
minus = -sum(log(dnorm(Y - X %*% beta, 0, sigma)))
return(minus)
}
# regress Y on X1
X <- model.matrix(lm(y ~ x1, data = df))
mle2(ll2, start = c(beta0 = 0.1, beta1 = 0.2, sigma = 1),
vepar = TRUE, parnas = c('beta0', 'beta1', 'sigma'))
#regress Y on X1+X2
X <- model.matrix(lm(y ~ x1 + x2, data = df))
mle2(ll2, start = c(beta0 = 0.1, beta1 = 0.2, beta2 = 0.1, sigma = 1),
vepar = TRUE, parnas = c('beta0', 'beta1', 'beta2', 'sigma'))
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.