(1) Consider the matrix A=[-253 -232 -96 1088 280; 213 204 93 -879 -225; -90 -90
ID: 2901850 • Letter: #
Question
(1) Consider the matrix
A=[-253 -232 -96 1088 280; 213 204 93 -879 -225; -90 -90 -47 360 90; -38 -36 -18 162 40; 62 64 42 -251 -57]
(a) Find all eigenvalues of A.
(b) Determine a basis for each eigenspace.
(c) If the matrix is diagonalizable, construct a matrix that will diagonalize it. You may not explicitly use the diagonalize command in MATLAB.
(2) Consider the matrix
B=[ 0 1 1 0; 1 -2 2 1; 1 2 -2 1; 0 1 1 0]
Since this matrix is symmetric, it is orthogonally diagonalizable. Again, without using the diagonalize command in MATLAB, find an orthogonal matrix that P diagonalizes B. Make sure you show that P is orthogonal.
Explanation / Answer
code:
a)
A=[-253 -232 -96 1088 280; 213 204 93 -879 -225; -90 -90 -47 360 90; -38 -36 -18 162 40; 62 64 42 -251 -57];
[P,D]=eig(A);
which gives:
P =
0.7201 0.7246 0.5533 0.7128 0.5842
-0.6172 -0.6012 0.0376 -0.6040 -0.0837
0.2572 0.2581 -0.4651 0.2622 -0.2207
0.1029 0.1098 -0.0817 0.1165 -0.0981
-0.1543 -0.1867 0.6851 -0.2116 0.7703
D =
7 0 0 0 0
0 -2 0 0 0
0 0 -2 0 0
0 0 0 3 0
0 0 0 0 3
where eigen values are diagonal elements of D:
7,-2,-2,3,3
b)
Basis in coulmn vectors of P corresponding to eigen values of 7,-2,-2,3 and3 repectively:
P =
0.7201 0.7246 0.5533 0.7128 0.5842
-0.6172 -0.6012 0.0376 -0.6040 -0.0837
0.2572 0.2581 -0.4651 0.2622 -0.2207
0.1029 0.1098 -0.0817 0.1165 -0.0981
-0.1543 -0.1867 0.6851 -0.2116 0.7703
c)
let D be diagonal vector:
D=inverse of(P)*A*P
code:
diagonal=inv(P)*A*P;
which gives:
diagonal =
7.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -2.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -2.0000 0.0000 0.0000
0.0000 0.0000 0.0000 3.0000 0.0000
0.0000 0.0000 0.0000 0.0000 3.0000
2)
PTP=I
PT=P-1
code:
B=[ 0 1 1 0; 1 -2 2 1; 1 2 -2 1; 0 1 1 0];
[P,D]=eig(B)
which give:
P =
0.0000 -0.5000 -0.7071 -0.5000
0.7071 0.5000 0.0000 -0.5000
-0.7071 0.5000 -0.0000 -0.5000
0 -0.5000 0.7071 -0.5000
D =
-4 0 0 0
0 -2 0 0
0 0 0 0
0 0 0 2
which gives:
check if P is orthoganal or not
code:
transpose(P)*P
which gives:
ans =
1.0000 0.0000 -0.0000 -0.0000
0.0000 1.0000 -0.0000 0.0000
-0.0000 -0.0000 1.0000 -0.0000
-0.0000 0.0000 -0.0000 1.0000
which implies P is orthogonal matrix
diagonalizing B:
PTBP=digonal matrix
code:
transpose(P)*B*P
which give diagonal matrix:
ans =
-4.0000 -0.0000 -0.0000 0.0000
-0.0000 -2.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.0000
-0.0000 -0.0000 0.0000 2.0000
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.