Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

7.1 Boolean Algebra Structure 1. Give reasons for the following steps in the pro

ID: 2901524 • Letter: 7

Question

7.1 Boolean Algebra Structure

1. Give reasons for the following steps in the proof sequence:

(x + y)(x' + y) = (y + x)(y + x') ________________

                      = y + (xx') _____________________

                      = y + 0 _________________________

                      = y ____________________________

2. Give reasons for the following steps in the proof sequence:

(x + y) + (yx') = (y + x) + (yx') ________________

                      = y + (x + (yx')) ________________

                      = y + (x + y)(x + x') _____________

                      = y + (x + y)1 _________________

                      = y + (x + y) ___________________

                      = (x + y) + y ____________________

                      = x + (y + y) ____________________

                      = x + y ________________________

3. Give the Boolean expression for the network on p 567, #2.

__________________________________________________

4. Give the truth function for the network on p 567, #2.

5. Find the canonical sum-of-products form for the truth function given below.

X1 | X2 | X3 | f(X1, X2, X3)       

1     1      1           0_____

1     1      0           1_____

1     0      1           1_____

1     0      0           0_____

0     1      1           1_____

0     1      0           0_____

0     0      1           0_____

0     0      0           1_____

Answer:__________________________________________________________________________

Explanation / Answer

1. Commutative law

Distributive law and then idempotent law y.y=y

Identity function in OR operation

2. Commutative law

Associative law

Distributive law

x +x'=1(OR operation with negation)

Anything ANDed with one is itself

Associative property

Antthing ANDed or ORed with itself is itself

[Need diagrams for the two questions]

5. For finding Sum of Products or SOP, find out the entries which are one and the corresponding variables in those entries will be ANDed together with their high states as the variable and their low states written as variable'.

Here, X1X2X3' + X1X2'X3 + X1'X2X3 + X1'X2'X3'

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote