Open Show Work SAVE FOR LATER SUBMIT ANSWER Determine whether each of the follow
ID: 2895467 • Letter: O
Question
Open Show Work
SAVE FOR LATER
SUBMIT ANSWER
Determine whether each of the following tables of values could correspond to a linear function, an exponential function, or neither. For each table of values that could correspond to a linear or an exponential function, find a formula for the function.If the function is neither linear nor exponential, enter NA.
(a)
The table of values corresponds to
neither a linear function nor an exponential functiona linear functionan exponential function
.(b)
The table of values corresponds to
neither a linear function nor an exponential functiona linear functionan exponential function
.(c)
The table of values corresponds to
an exponential functionneither a linear function nor an exponential functiona linear function
.Click if you would like to Show Work for this question:
Open Show Work
Question Attempts: 0 of 7 usedSAVE FOR LATER
SUBMIT ANSWER
Explanation / Answer
Notice x is changing linearly by 1
And y is changing by 10.5 - 9.2, i.e 1.3
Then changing by 5
Then changing by 15.1
Certainly exponential.
y = A*b^x
Using (0 , 9.2) :
y = 9.2*(b)^x
Using (1 , 10.5) :
10.5 = 9.2 * b^1
b = 105/92
So, exponential is :
y = 9.2 * (105/92)^x ----> ANSWER
---------------------------------------------------------------------
b)
(-1 , 56.1)
(0 , 50.49)
(1 , 45.441)
(2 , 40.8969)
x decreasing linearly by 1
y does not decrease linearly
This is exponential again
y = 50.49 * b^x
Using (1 , 45.441) :
45.441 = 50.49 * b^(1)
b = 0.9
So, we have
50.49(0.9)^x
---------------------------------------------------------------------
c)
(0 , 54)
(2 , 49)
(4 , 44)
(6 , 39)
x increases linearly by 2
And y decreaseslinearly by 5
So, we have linear function here
y = mx + b
Using (0 , 54)m we have
y = mx + 54
Clearly slope = (y2 - y1) / (x2 - x1)
m = (49 - 54) / (2 - 0)
m = -5/2
m = -2.5
So, y = -2.5x + 54
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.