Use the graph of f(x) = (1 - 2/x) to estimate the value of lim_x rightarrow infi
ID: 2895008 • Letter: U
Question
Use the graph of f(x) = (1 - 2/x) to estimate the value of lim_x rightarrow infinity f(x) correct to two decimal places. Use a table of values of f(x) to estimate the limit to four decimal places. Find the limit. lim_x rightarrow 1 2 - x/(x - 1)^2 lim_x rightarrow -3^- x + 2/x + 3 lim_x rightarrow 2^+ e^3/(2 - x) lim_x rightarrow pi^- cot x lim_x rightarrow 3^+ ln(x^2 - 9) lim_x rightarrow 2^- x^2 - 2x/x^2 - 4x + 4 lim_x rightarrow infinity x^3 + 5x/2x^3 - x^2 + 4 lim_x rightarrow -infinity t^2 + 2/t^3 + t^2 - 1 lim_x rightarrow infinity 4u^2 + 5/(u^2 - 2)(2u^2 - 1) lim_x rightarrow infinity x + 2/squareroot 9x^2 + 1 lim_x rightarrow infinity (squareroot 9x^2 + x - 3x) lim_x rightarrow infinity (squareroot x^2 + ax - squareroot x^2 + bx) lim_x rightarrow infinity e^-x^2 lim_x rightarrow infinity squareroot x^2 + 1 lim_x rightarrow infinity cos x lim_x rightarrow infinity sin^2 x/x^2 lim_x rightarrow infinity (e^-2x cos x) lim_x rightarrow infinity e^3x - e^Explanation / Answer
(24)
Divide throughout by t^3
Limit (t -> - ) (1/t + 2/t^3)/(1 + 1/t - 1/t^3)
As t -> -, the limit is 0
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.