Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Determine the open intervals on which the graph of f(x) = 3x - 2 cos x is concav

ID: 2893244 • Letter: D

Question

Determine the open intervals on which the graph of f(x) = 3x - 2 cos x is concave downward or concave upward. A. concave upward on .., (-3 pi/6, -pi/6), (pi/6, 3 pi/6), (5 pi/6, 7 pi/6), ..: concave downward on .., (-5 pi/6, 3 pi/6), (-pi/6, pi/6), (3 pi/6, 5 pi/6), ... B. concave downward on .., (-3 pi/4, -pi/4), (pi/4, 3 pi/4), (5 pi/4, 7 pi/4), ...: concave downward on .., (-5 pi/4, 3 pi/4), (-pi/4, pi/4), (3 pi/4, 5 pi/4), ... C. concave upward on .., (-3 pi/2, -pi/2), (pi/2, 3 pi/2), (5 pi/2, 7 pi/2), ....: concave downward on ..., (-5 pi/2, -3 pi/2), (-pi/2, pi/2), (3 pi/2, 5 pi/2), .... D. concave downward on .., (-3 pi/2, -pi/2), (pi/2, 3 pi/2), (5 pi/2, 7 pi/2), ...: concave upward on .., (-5 pi/2, 3 pi/2), (-pi/2, pi/2), (3 pi/2, 5 pi/2), ... Determine the open intervals on which the graph of y = -x^3 + 2x^2 + 3x - 2 is concave downward or concave upward. A. concave downward on (-infinity, infinity) B concave downward on (-infinity, 2/3): concave upward on (2/3, infinity) C. concave downward on (-infinity, 2/3): concave upward on (-2/3, infinity) D. concave upward on (-infinity, 2/3): concave downward on (-infinity, 2/3): concave downward on (2/3, infinity) E. concave upward on (-infinity, 2/3): concave downward on (-2/3, infinity)

Explanation / Answer

interval for which

f''(x) > 0 then f(x) concave upwards,

f''(x) < 0, then f(x) concave downwards

13.

f(x) = 3x - 2*cos x

f'(x) = 3*1 - 2*(-sin x)

f'(x) = 3 + 2*sin x

f''(x) = 0 + 2*cos x

2*cos x > 0, in interval [-4*pi, 4*pi]

when x = (-4pi, -7pi/2) U (-5pi/2, -3pi/2) U (-pi/2, pi/2) U (3pi/2, 5pi/2) U (7pi/2, 4pi)

2*cos x < 0, in interval [-4*pi, 4*pi]

when x = (-7pi/2, -5pi/2) U (-3pi/2, -pi/2) U (pi/2, 3pi/2) U (5pi/2, 7pi/2)

from above intervals, correct option is D.

14.

f(x) = -x^3 + 2x^2 + 3x - 2

f'(x) = -3x^2 + 4x + 3

f''(x) = -6x + 4

-6x + 4 > 0, when x < 2/3

-6x + 4 < 0, when x > 2/3

Correct option is D.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote