Suppose z = x^2 sin y, x = 4s^2 + 5t^2, y = -6st. A. Use the chain rule to find
ID: 2892742 • Letter: S
Question
Suppose z = x^2 sin y, x = 4s^2 + 5t^2, y = -6st. A. Use the chain rule to find partial differential z/partial differential s and partial differential z/partial differential t as functions of x, y, s and t. partial differential z/partial differential s = 4x8siny(-6t)+ x^2cosy(-8s) partial differential z/partial differential t = -12xtsiny-8x^2scos7 B. Find the numerical values of partial differential z/partial differential z and partial differential z/partial differential z when (s, t) = -3, -2). partial differential z/partial differential s (-3, -2) = 2197.5 partial differential z/partial differential y = (-3, -2) = 2403.9Explanation / Answer
z = x^2*sin y
x = 4s^2 + 5t^2
y = -6*s*t
using derivatives
dz/dx = 2*x*sin y
dz/dy = x^2*cos y
dx/ds = 2*4*s + 0 = 8*s
dx/dt = 0 + 2*5*t = 10*t
dy/ds = -6*1*t = -6*t
dy/dt = -6*s*1 = -6*s
Now
dz/ds = (dz/dx)*(dx/ds) + (dz/dy)*(dy/ds) = (2*x*sin y)*(8*s) + (x^2*cos y)*(-6*t)
dz/ds = 16*x*s*sin y - 6*x^2*t*cos y
And
dz/dt = (dz/dx)*(dx/dt) + (dz/dy)*(dy/dt) = (2*x*sin y)*(10*t) + (x^2*cos y)*(-6*s)
dz/dt = 20*x*t*sin y - 6*x^2*s*cos y
B.
when (s, t) = (-3, -2)
at (-3, -2), x = 4*s^2 + 5*t^2
x = 4*(-3)^2 + 5*(-2)^2 = 56
y = -6*(-3)*(-2) = -36
So,
dz/ds(-3, -2) = 16*x*s*sin y - 6*x^2*t*cos y
= 16*56*(-3)*sin (-36) - 6*(56)^2*(-2)*cos (-36)
= -7481.43
And
dz/dt(-3, -2) = 20*x*t*sin y - 6*x^2*s*cos y
= 20*56*(-2)*sin (-36) - 6*(56)^2*(-3)*cos (-36) = -9444.88
Let me know if you have any doubt.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.