Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

This Question: 1 pt 30f 11 (11 complete) a. The linear approximation to f(x)-x2

ID: 2891078 • Letter: T

Question

This Question: 1 pt 30f 11 (11 complete) a. The linear approximation to f(x)-x2 at x 0 is L(x)0 b. Linear c. If f(x) mx+ b, then the linear approximation to f at any point is Lox)-fx). d. When linear at x#0 provides a good approximation to f(x)-I a. Is statement a true or false? A. The statement is false. Substituting 0 for a in L(x)-f(a) + raxx-a) gives L(x-1. Thus, LO)-1 O B. The statement is false. Substituting 0 for a in Lox) f(a) +f(axx-a) gives L(x)-2. Thus, L(o)-2 O C. The statement is true. Substituting 0 for a in Lx)(a)+axx- a) gives L(x) -x. Thus, L(0)-0 e) D. The statement is true. Substituting O for a in L(x)-f(a)-f(a)(x-a) gives L(x)-0 Thus, Lro)-o. b. Is statement b true or false? A B. The statement is false. Linear approximation at x-o does not provide a good approximatiT to fo . x because os noit er positive nor negative. The state ment is true. Linear approximation at x-o provides a good approximation to f(x)·x) because L(X)-xfor absolute value D. The statement is true. Linear approximation at x·0 provides a good approxmaion to f )-|x) because L(x-o e. Is statement o true or faisa? absolute aluo functions. Click to select your snewer 0,3

Explanation / Answer

a)

f(x)=x2

f '(x)=2x

f(0)=02=0

f '(0)=2*0=0

L(x)=f(0) +(f '(0))(x-0)

L(x)=0 +(0*(x-0))

L(x)=0

true

option D

============================================================

b)

f(x)=|x|

false

f '(x)=-1 when x<0, f '(x)=1 when x>0 , f '(x) doesnot exist for x=0

optionC

============================================================

c)

true

f(x)=mx+b

a straightline is tangent to itself

so L(x)=f(x)

option B

===================================================

d)

f(x)=lnx

f '(x)=(1/x)

L(x)=f(e) +(f '(e))(x-e)

L(x)=(lne) +(1/e)(x-e)

L(x)=1 +(x/e)-1

L(x)=(x/e)

for x=e2(which is greater than e)

f(e2)=lne2 =2lne=2*1=2

L(e2)=(e2/e)= e

we know e>2

so L(x) gives overestimte of the true values

TRUE

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote