Derivatives of... 1.y=cos^2(3x^2+7x) 2. Y=ln(tan^-1(3x)) 3. Y=(x^3+2^x)sin(x) 4.
ID: 2887766 • Letter: D
Question
Derivatives of... 1.y=cos^2(3x^2+7x) 2. Y=ln(tan^-1(3x)) 3. Y=(x^3+2^x)sin(x) 4. Y=(sin(3x))/(ln(2x)) Use implicit differentiation 1. Xy=sin(x+y)+42^y 2. Tan(x+y^8)=sin^-1(x^2+y) Use logarithmic differentiation on the following: 1.y=(x^3cos(3x+5))/((x^2+3x+4)^42) 2. Y=x^(sin^-1(3x))Find the tangent line to the curve y=x^4-3x^2+12 that passes through the x-coordinate (Two, 16).
Find the points to the curve y=x^3-3x-4 where the tangent line is horizontal. Derivatives of... 1.y=cos^2(3x^2+7x) 2. Y=ln(tan^-1(3x)) 3. Y=(x^3+2^x)sin(x) 4. Y=(sin(3x))/(ln(2x)) Use implicit differentiation 1. Xy=sin(x+y)+42^y 2. Tan(x+y^8)=sin^-1(x^2+y) Use logarithmic differentiation on the following: 1.y=(x^3cos(3x+5))/((x^2+3x+4)^42) 2. Y=x^(sin^-1(3x))
Find the tangent line to the curve y=x^4-3x^2+12 that passes through the x-coordinate (Two, 16).
Find the points to the curve y=x^3-3x-4 where the tangent line is horizontal. 1.y=cos^2(3x^2+7x) 2. Y=ln(tan^-1(3x)) 3. Y=(x^3+2^x)sin(x) 4. Y=(sin(3x))/(ln(2x)) Use implicit differentiation 1. Xy=sin(x+y)+42^y 2. Tan(x+y^8)=sin^-1(x^2+y) Use logarithmic differentiation on the following: 1.y=(x^3cos(3x+5))/((x^2+3x+4)^42) 2. Y=x^(sin^-1(3x))
Find the tangent line to the curve y=x^4-3x^2+12 that passes through the x-coordinate (Two, 16).
Find the points to the curve y=x^3-3x-4 where the tangent line is horizontal.
Explanation / Answer
1.y=cos^2(3x^2+7x)
y' = 2cos(3x^2+7x) (d/dx(cos(3x^2+7x)))
= -2cos(3x^2+7x).sin(3x^2+7x) (d/dx(3x^2+7x))
= -2(6x+7)cos(3x^2+7x).sin(3x^2+7x)
2. Y=ln(tan^-1(3x))
y' = (1/(tan^-1(3x)))(d/dx((tan^-1(3x)))
=(1/(tan^-1(3x))) * (1/(1+9x^2))(3)
(3/(1+9x^2))(1/(tan^-1(3x)))
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.