Let f(x, y. z) = x1 + xy + yz. Grading Policy: Points 7+7+2+2+2. Calculate Delta
ID: 2873794 • Letter: L
Question
Let f(x, y. z) = x1 + xy + yz. Grading Policy: Points 7+7+2+2+2. Calculate Delta (f)(l. 2,5). Grading Policy: gradient 4 and evaluation 3. Answer: Gradient = evaluates to . (b) Calculate the directional derivative of / in the direction of at the point (1.2.5) (In notation: Dv(f)( 1,2.5)). Grading Policy: Gradient 4. evaluation of formula 3. One off for forgetting to length. Answer: The derivative is -2/ square root 14 Find a vector v such that Dv(f)(1,2,5) = 0. Answer: Perpendicular to the gradient: Many possible answers. For exampleExplanation / Answer
c)
let (a,b,c) be the vector v
f. v/|v|=0
<4,6,2>.<a,b,c>/(a2+b2+c2) =0
==>4a+6b+2c=0
any (a,b,c) satisfying 4a+6b+2c=0 is answer
let a=6 ,b=-4 ==>4*6 +6*(-4) +2c=0==>c=0
<a,b,c>=<6,-4,0>
d)directional derivative is maximum when v=f
==>v=<4,6,2>
Du=f.f/|f|
Du=|f||f|cos0/|f|
Du=|f||f|*1/|f|
Du=|f|
Du=sqrt(42+62+22)
Du=2sqrt14
e)directional derivative is minimum when v=-f
==>v=-<4,6,2>
Du=f.(-f)/|-f|
Du=|f||f|cos180o/|f|
Du=-|f||f|*1/|f|
Du=-|f|
Du=-sqrt(42+62+22)
Du=-2sqrt14
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.