Evaluate the following limit. If the answer is positive infinite, type \"I\"; if
ID: 2873214 • Letter: E
Question
Evaluate the following limit. If the answer is positive infinite, type "I"; if negative infinite, type "N"; and if it does not exist, type "D' lim x rightarrow infinity(square root x^2 + 6x - square root x^2 + 3x) Evaluate the following limit. If the answer is positive infinite, type "I"; if negative infinite, type "N"; and if it does not exist, type "D". lim x rightarrow infinity (square root 3x^2 + 8x + 6 - square root 3x^2 + 3x + 1) Which of the following functions satisfy the following conditions? Find the limits as (a) x rightarrow infinity and (b) rightarrow -infinity. Write "I" for infinity or "N" for negative infinity below. [Can you use this information, along with the intercepts, to give a rough sketch of the graph?] Find lim x rightarrow infinity f(x) if 4x - 1/xExplanation / Answer
1) lim x -> infinity sqrt(x^2 +6x) - sqrt(x^2 +3x)
Multiplying and dividing by sqrt(x^2 +6x) + sqrt(x^2 +3x)
==> lim x -> infinity sqrt(x^2 +6x) - sqrt(x^2 +3x) * [sqrt(x^2 +6x) + sqrt(x^2 +3x)]/[sqrt(x^2 +6x) + sqrt(x^2 +3x)]
==> lim x -> infinity {(x^2 +6x) - (x^2 +3x) }/[sqrt(x^2 +6x) + sqrt(x^2 +3x)]
==> lim x -> infinity {3x }/[sqrt(x^2 +6x) + sqrt(x^2 +3x)]
==> Positive infinity : I
2) lim x -> infinity sqrt(3x^2 +8x +6) - sqrt(3x^2 +3x +1)
Multiplying and dividing by sqrt(3x^2 +8x +6) + sqrt(3x^2 +3x +1)
==> lim x -> infinity sqrt(3x^2 +8x +6) - sqrt(3x^2 +3x +1) * [sqrt(3x^2 +8x +6) + sqrt(3x^2 +3x +1)]/[sqrt(3x^2 +8x +6) + sqrt(3x^2 +3x +1)]
==> lim x -> infinity (3x^2 +8x +6) - (3x^2 +3x +1)/[sqrt(3x^2 +8x +6) + sqrt(3x^2 +3x +1)]
==> lim x -> infinity (5x -5) /[sqrt(3x^2 +8x +6) + sqrt(3x^2 +3x +1)]
==> positive infinity : I
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.