Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use differentials to approximate the change in z for the given change in the ind

ID: 2867956 • Letter: U

Question

Use differentials to approximate the change in z for the given change in the independent variables, z = x2 - 3xy + y when (x,y) changes from (5, 5) to (5.03,4.99) dz = (Type an integer or a decimal.) Find the linear approximation for the following function at the given point. Use part (a) to estimate the given function value. f(x, y) = 6x - 9y + 6xy; (2,3); estimate f(2,2,3.53). Find an equation of the plane tangent to the following surface at the given point. z = 3 - 3x2 - y2; (3,3, - 33) (simplify your answer. Do not factor.). Use differentials to approximate the change in z for the given change in the independent variables. z = In (x6y) when (x,y) changes from (-2, 4) to (-1.98, 3.98). (Type an integer or a decimal).

Explanation / Answer

z = x^2 - 3xy + y

zx = partial derivative with x
zx = 2x - 3y
zx = 2(5) - 3(5) = -5

zy = -3x + 1
zy = -3(5) + 1
zy = -14

dz = zx(x - x0) + zy(y - y0)

dz = -5(x - 5) - 14(y - 5)

dz = -5x - 14y + 95

Plug in x = x = 5.03 and y = 4.99 :

dz = -5(5.03) - 14(4.99) + 95

dz = -0.01 ---> ANSWER

---------------------------------------------------------------------------------------------

f(x,y) = 6x - 9y + 6xy at (2,3)

fx = 6 + 6y = 6 + 6(3) = 24
fy = -9 + 6x = -9 + 6(2) = 3

When x = 2 , y = 3, we get : z = 12 - 27 + 36 --> z = 21

So, L(x,y) = fx(x-x0) + fy(y-y0) + z0

L(x,y) = 24(x - 2) + 3(y - 3) + 21 ---> ANSWER

L(2.2 , 3.53) = 24(2.2 - 2) + 3(3.53 - 3) + 21 = 27.39 ---> ANSWER

---------------------------------------------------------------------------------------------

z = 3 - 3x^2 - y^2

zx = -6x = -6(3) = -18

zy = -2y = -2(3) = -6

z - z0 = zx(x - x0) + zy(y - y0)

z - (-33) = -18(x - 3) - 6(y - 3)

z + 33 = -18x + 54 - 6y + 18

z = -18x - 6y + 39 ---> ANSWER

-------------------------------------------------------------------------------------------

z = ln(x^6 * y)

Lets expand the log :

z = ln(x^6) + ln(y)

z = 6ln(x) + ln(y)

zx = 6/x = 6/-2 = -3

zy = 1/y = 1/4

dz = zx(x-x0) + zy(y-y0)

dz = -3(x + 2) + (1/4)(y - 4)

dz = -3x + (1/4)y - 7

Plug in -1.98 and 3.98 :

dz = -3(-1.98) + (1/4)(3.98) - 7

dz = -0.065 ----> ANSWER