(I) T or F: The function is concave up at x=1/1O? True False (m) T or F: The fun
ID: 2866170 • Letter: #
Question
(I) T or F: The function is concave up at x=1/1O? True False (m) T or F: The function is concave up at x=1? True False (n)The value of Iimx rightarrow infinity f'(x) is .(If you need to use -infinity or infinity .) (o) The graph of y=f(x) is best represented by which of the following pictures (select A, B, C or D): A B C D Question For this problem, consider the function Y =f(x)= x^4.x on the domain of all positive numbers; i.e. (O,infinity) . (If you need to use -infinity or infinity, enter -infinity or infinity.) (b) T or F: The function has no x intercepts True False (c) T or F: The y axis is a vertical asymptote True False (d) The value of Iimitx rightarrow infinityx^4.x is .(If you need to use -infinity or infinity, enter -infinity or infinity.) (e) What is the formula for f?(x)= (f) How many critical numbers are there for f(x)? (h) The smallest critical number is (I) The largest interval in the domain on which the function is increasing is ( , ). (If you need to use -infinity or infinity, enter -infinity or infinity.) (j) There is a local minimum occurring at ( , ) on the graph. (k) The formula for f^'(x)=Explanation / Answer
y = x^(4x)
ln(y) = 4x*ln(x)
ln(y) = 4ln(x) / (1/x)
When x ---> 0+, 4ln(0+) --> -infinity
And 1/0+ ---> +infinity
So, infinity by infinity form and thus, we can use L Hospital's Rule
ln(y) = 4ln(x) / (1/x)
Deriving :
ln(y) = (4/x) / (-1/x^2)
ln(y) = 4/x * -x^2
ln(y) = -4x
ln(y) = -4*0 = 0
ln(y) = 0
y = e^0
y = 1 ---> ANSWER
-------------------------------------------------------
b) True
-------------------------------------------------------
c) True
---------------------------------------------------------
d)
lim x ---> infinity :
ln(y) = 4x*ln(x)
ln(y) = 4ln(x) / (1/x)
Deriving :
ln(y) = 4/x / (-1/x^2)
ln(y) = x/4
ln(y) = infinity/4
ln(y) = infinity
y = e^(infinity)
y = +infinity ---> ANSWER
----------------------------------------------------------
e)
f(x) = x^(4x)
y = x^(4x)
ln(y) = 4x*ln(x)
Deriving :
y'/y = 4 + 4ln(x)
y' = y(4 + 4ln(x))
y' = x^(4x) * (4 + 4ln(x)) ---> ANSWER
-----------------------------------------------------------
f) Critical numbers :
x^(4x) * (4 + 4ln(x)) = 0
x^(4x) = 0 and 4 + 4ln(x) = 0
x^(4x) = 0 ---> no solution
4 + 4ln(x) = 0
ln(x = -1
x = e^-1
x = 1/e
So, only one critical number ----> ANSWER
----------------------------------------------------------------------
h) 1/e --> ANSWER
----------------------------------------------------------------------
i)
Increases over (1/e , infinity) ---> ANSWER
------------------------------------------------------------------------
j)
When x = 1/e, y = (1/e)^(4*1/e) --> y = (1/e)^(4/e) = 0.2295767771002993
Local minimum at (1/e , 0.2295767771002993) ---> ANSWER
--------------------------------------------------------------------------
k) f''(x) :
f'(x) = x^(4x) * (4 + 4ln(x))
f''(x) = x^(4x) * (4/x + (4ln(x) + 4)^2) ---> ANSWER
-------------------------------------------------------------------------
L)
x = 1/10
Lets plug in x = 1/10 into the f'' found above
f''(1/10) = 0.1^(4*0.1) * (4/0.1 + (4ln(0.1) + 4)^2) = 26.7319596736269926 --> positive
So, since it is positive, it is concave up
So, TRUE ---> ANSWER
-----------------------------------------------------------------------
M)
x = 1 :
f''(1) = 1^(4*1) * (4/1 + (4ln(1) + 4)^2) = 20 --> positive
So, TRUE ---> ANSWER
--------------------------------------------------------------------------
N)
f'(x) = x^(4x) * (4 + 4ln(x))
f'(x) = 4x^(4x) + 4x^(4x)*ln(x)
From the graph this is a monotonically increasing function
So, as lim x --> infinity, f'(x) will also tend to infinity
+infinity ----> ANSWER
-------------------------------------------------------------------------------
O)
Plot B ---> ANSWER
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.