Locate the critical points of the following function. Then use the Second Deriva
ID: 2863855 • Letter: L
Question
Locate the critical points of the following function. Then use the Second Derivative Test to determine whether they correspond to local maxima, local minima, or neither. f(x) = 3x^2 e^-2x -1 What is(are) the critical point(s) of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The critical point(s) is(are) x =. (Use a comma to separate answers as needed.) B. There are no critical points for f. What is/are the local minimum/minima of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The local minimum/minima of f is/are at x = B. There is no local minimum of f. What is/are the local maximum/maxima of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The local maximum/maxima of f is/are at x =. B. There is no local maximum of f.Explanation / Answer
given f(x)=3x2e-2x-1
differentiate with respect to x
f '(x)=6xe-2x +(3x2)(-2)e-2x-0
f '(x)=6xe-2x -6x2e-2x
for critical point f '(x) =0
6xe-2x -6x2e-2x=0
6x-6x2=0
6x(1-x)=0
x=0,x=1
critical points are x =0,1
f ''(x)=6e-2x+6x(-2)e-2x -(12xe-2x+6x2(-2)e-2x)
f ''(x)=6e-2x-12xe-2x -12xe-2x+12x2e-2x
f ''(x)=(6-24x+12x2)e-2x
f "(0)=6>0 so local minimum at x =0
f ''(1)=(6-24+12)e-2=-6/e2<0
so local maximum at x =1
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.