Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1.) Plot the parametric equations below. x=6 cos(t) y=4 sin(t) 2). Write the par

ID: 2862286 • Letter: 1

Question

1.) Plot the parametric equations below.

x=6 cos(t)

y=4 sin(t)

2). Write the parametric equations below in Cartesian coordinates.

x=3 cos(t)
y=4 sin(t)

3).Given the parametric equations x = f(t) and y = g(t), dy/dx is given by g'(t)/f'(t). Find dy/dx given parametric equations below.

dy/dx=(g^? (t))/(f^? (t) )

Parametric equations:

x=(t+1)/2
y=-t^2+t

4). Convert the following polar equation to Cartesian coordinates.

r=8 sin(?)

5). Find the slope of the line tangent to the polar curve at the point given point.

r=4+sin(?);(4, 0)

Explanation / Answer

3 -

x = (t + 1)/2
=> x = (1/2)t + 1/2
=> dx/dt = d/dt((1/2)t + 1/2)
=> dx/dt = d/dt((1/2)t) + d/dt(1/2)
=> dx/dt = 1/2 + 0
=> dx/dt = 1/2
=> dt/dx = 2

y = -t^2 + t
=> dy/dt = d/dt(-t^2 + t)
=> dy/dt = d/dt(-t^2) + d/dt(t)
=. dy/dt = -2t + 1

dy/dx = dy/dt * dt/dx
=> dy/dx = (-2t + 1) * 2
=> dy/dx = -4t + 2

edit your hint is the same thing as dy/dx = (dy/dt)/(dx/dt)
=> dy/dx = (-2t + 1) / (1/2)
=> dy/dx = (-2t + 1) * 2
=> dy/dx = -4t + 2

4 -

r = 8 sin ? or
r