1. Given y=x 2 /(x + 3). Find where y has vertical and horizontal tangents. 2. I
ID: 2859568 • Letter: 1
Question
1. Given y=x2/(x + 3). Find where y has vertical and horizontal tangents.
2. If y= sqrt(6 + 4x3). Find d2y/dx2. Write the equation of the tangent line at (-1,sqrt(2)).
3.State where y=abs(4+x) is not differentiable and then use the alternative form for the derivative at a point to show that it is not differentiable.
4.Find dy/dx where y = sin(3x + 2y).
5.Air is being pumped into a spherical balloon at a rate of 32 cubic feet per min. At what rate is the radius increasing when the radius is 3 feet when V=4r3/3.
Explanation / Answer
1)Given y=f(x)=x2/(x + 3)
domain of f(x) is (-infinity,-3)U(-3,infinity)
differentiate with respect to x . (u/v)'=(u'v -uv')/v2
dy/dx=[2x(x + 3) -x2(1 + 0)]/(x + 3)2
dy/dx=[2x2 + 6x -x2]/(x + 3)2
dy/dx=[x2 + 6x]/(x + 3)2
horizontal tangent occurs when dy/dx =0
=>[x2 + 6x]/(x + 3)2=0
=>x2+6x =0
=>x(x+6)=0
=>x =0,x =-6
at x =0,y=0
x=-6,y=(-6)2/(-6 + 3) =-12
horizontal tangent occurs at (x,y)=(0,0)and (-6,-12)
vertical tangent occurs when 1/(dy/dx) =0
(x + 3)2/[x2 + 6x]=0
=>x =-3
but x=-3 is not in domain of function, so there is no vertical tangent
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.