Q1) ----------------------------------------------------------------------------
ID: 2840440 • Letter: Q
Question
Q1)
--------------------------------------------------------------------------------------------
Q2)
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
Explanation / Answer
Q1)
f ' (t)=0
==>ue^t -ve^-t=0
==>ue^t=ve^-t
==>e^2t=v/u
==>t=0.5 ln(v/u)
Q2)f ' (x)=0
==>40xe^-0.3x -6x^2e^-0.3x=0
==>xe^-0.3x *(40-6x)=0
==>x=0, x=20/3
x=0==>f(0)=0------------>local minimum
x=20/3 ==>f(20/3)>0--->local maximum
Q3)F'(X)=0
==>8x^7 (7-x)^9 +-9x^8 (7-x)^8 =0
==>x^7 (7-x)^8 (8*(7-x) -9x)=0
==>x^7 (7-x)^8 (56-17x)=0
==>x=56/17 ,0,7
local minmum at x=0
local maximum at x=56/17 or 3.294
neither at x=7
Q4)F"(T)=0
f'(t)=4t^3+3t^2 -36t
f"(t)=12t^2 +6t -36=0
==>2t^2 +t -6=0
==>(t+2)*(2t-3)=0
==>t=-2---->smaller
, t=3/2=1.5-->larger
Q5)option A
Q6)a)g is decreasing in interval around x0
b)local minimum
c)concave up
Q7)D,F as f"(x) =0 at these points and sign of f"(x) changes
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.