Q1) Given any pair of curves y^2-x^2=a and xy=b , where a and b are positives co
ID: 2840292 • Letter: Q
Question
Q1) Given any pair of curves y^2-x^2=a and xy=b , where a and b are positives constants, show that their tangents are perpendicular at any point where they intersect.
------------------------------------------------------------------
Q2) At a particular location, f(p) is the number of liters of soda sold when the price is p dollars per liters.
(a) What does the statement f(1)=5757 tell you about soda sales?
(b) Find and interpret f^-1(5757).
(c) What does the statement f'(1)=-1234 tell you about soda sales?
(d) Find and interpret (f^-1)'(5757).
------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------
Explanation / Answer
(1)
y^2 - x^2 = a and xy = b
now derivate 1st curve
=> 2y y ' - 2x = 0
=> y ' = x/y which is slope m1
now derivate 2nd curve
=> y + xy' = 0
=> y ' = -y/x which is slope m2
so now find product of slopes of two curves
m1 * m2 = (x/y)(-y/x)
=> m1*m2 = -1
so product of slopes = -1
so tangents are perpendicular
(2)
(a) f(1)=5757 tells us that
number of liters of soda sold = 5757 where price is $1 per liter
(b)
f(1)=5757
=> 1 = f^-1 ( 5757)
so f^-1 ( 5757) = 1
(c) f'(1)=-1234
says change of number of liters of soda sold = -1234 where price is $1 per liter
(d) (f^-1)' ( x) = 1 / f ' ( f^-1(x) )
so ( f^-1) ' ( 5757 ) = 1/f ' ( f^-1(5757) )
= 1/ f ' ( 1 )
= -1 / 1234
(3)
d/dx (ln(e^x+e^-x)) = [ 1/ (e^x + e^-x) ] d/dx ( e^x + e^-x)
= ( e^x - e^-x ) / (e^x + e^-x)
= [ (e^x - e^-x) / 2 ] / [ ( e^x + e^ -x ) /2 ]
= sinhx / cos hx
= tan hx
(4)
(a)
f(x)=(x^(2)+2x)^cos(x)
ln ( f(x) ) = ln (x^(2)+2x)^cos(x)
=> ln ( f(X) ) = cosx ln ( x^2 + 2x)
now derivate
f ' (x) / f(x) = - sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ]
so f ' (X) = f(x) [ - sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ] ]
=> f ' (x) = (x^(2)+2x)^cos(x)[- sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ] ]
(b)
g(x)=2x^(2x)^(2x)
ln g(x) = ln 2x^(2x)^(2x)
=> ln ( g(x) ) = (2x)^(2x) ln 2x
ln ( ln ( g(x) ) = 2x ln2x + ln ( ln(2x))
now derivate
=> g'(x)/ [ ln (g(x))*g(X) ] = 2 ln2x + 2 + 2 / [ ln(2x) * 2x ]
=> g ' (X) = [ g(x) ln (g(x)) ] [ 2 ln2x + 2 + (1/ xln(2x) ) ]
=>g'(x) = [ 2x^(2x)^(2x) ln 2x^(2x)^(2x) ] [ 2 ln2x + 2 + (1/ xln(2x) ) ]
(c)
h(x)=arctan(x)^cot(x)
log h(x) = cotx log tan^-1 x
now derivate
h ' (X) / h(x) = -cscx cotx ln tan^-1 x + [cotx / tan^-1x ] (1/ (1+x^2) )
=> h ' (x) = h(x) [ -cscx cotx ln tan^-1 x + [cotx / tan^-1x ] (1/ (1+x^2) ) ]
=>h ' (x) = arctan(x)^cot(x)[ -cscx cotx ln arctan x + [cotx / arctanx ] (1/ (1+x^2) ) ]
(5)
4thRoot(101) = (101)^(1/4)
nearest 4t root we have is 4th root of 81 = 3
so f(x) = x^(1/4)
f(x + delta x) = f(x) + f ' (x) * delta x
so f( 81 + 20) = f(81) + (1/4)(x^-3/4) * 20
= f(81) + (1/4)(81^-3/4)*20
= 3 + (1/4)(1/27)*20
= 3 + 5/27
=86/27
=3.185
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.