Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Q1) Given any pair of curves y^2-x^2=a and xy=b , where a and b are positives co

ID: 2840292 • Letter: Q

Question

Q1) Given any pair of curves y^2-x^2=a and xy=b , where a and b are positives constants, show that their tangents are perpendicular at any point where they intersect.









------------------------------------------------------------------


Q2) At a particular location, f(p) is the number of liters of soda sold when the price is p dollars per liters.


(a) What does the statement f(1)=5757 tell you about soda sales?

(b) Find and interpret f^-1(5757).

(c) What does the statement f'(1)=-1234 tell you about soda sales?

(d) Find and interpret (f^-1)'(5757).






------------------------------------------------------------------

------------------------------------------------------------------

------------------------------------------------------------------

Explanation / Answer

(1)


y^2 - x^2 = a and xy = b


now derivate 1st curve


=> 2y y ' - 2x = 0


=> y ' = x/y which is slope m1



now derivate 2nd curve


=> y + xy' = 0


=> y ' = -y/x which is slope m2



so now find product of slopes of two curves


m1 * m2 = (x/y)(-y/x)


=> m1*m2 = -1



so product of slopes = -1



so tangents are perpendicular



(2)


(a) f(1)=5757 tells us that


number of liters of soda sold = 5757 where price is $1 per liter


(b)


f(1)=5757


=> 1 = f^-1 ( 5757)


so f^-1 ( 5757) = 1


(c) f'(1)=-1234


says change of number of liters of soda sold = -1234 where price is $1 per liter



(d) (f^-1)' ( x) = 1 / f ' ( f^-1(x) )



so ( f^-1) ' ( 5757 ) = 1/f ' ( f^-1(5757) )


= 1/ f ' ( 1 )


= -1 / 1234



(3)


d/dx (ln(e^x+e^-x)) = [ 1/ (e^x + e^-x) ] d/dx ( e^x + e^-x)


= ( e^x - e^-x ) / (e^x + e^-x)


= [ (e^x - e^-x) / 2 ] / [ ( e^x + e^ -x ) /2 ]


= sinhx / cos hx


= tan hx


(4)


(a)


f(x)=(x^(2)+2x)^cos(x)



ln ( f(x) ) = ln (x^(2)+2x)^cos(x)


=> ln ( f(X) ) = cosx ln ( x^2 + 2x)


now derivate



f ' (x) / f(x) = - sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ]



so f ' (X) = f(x) [ - sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ] ]


=> f ' (x) = (x^(2)+2x)^cos(x)[- sinx ln (x^2 + 2x ) + [ (cosx)(2x+2)/(x^2+2x) ] ]



(b)


g(x)=2x^(2x)^(2x)


ln g(x) = ln 2x^(2x)^(2x)


=> ln ( g(x) ) = (2x)^(2x) ln 2x


ln ( ln ( g(x) ) = 2x ln2x + ln ( ln(2x))


now derivate


=> g'(x)/ [ ln (g(x))*g(X) ] = 2 ln2x + 2 + 2 / [ ln(2x) * 2x ]


=> g ' (X) = [ g(x) ln (g(x)) ] [ 2 ln2x + 2 + (1/ xln(2x) ) ]


=>g'(x) = [ 2x^(2x)^(2x) ln 2x^(2x)^(2x) ] [ 2 ln2x + 2 + (1/ xln(2x) ) ]



(c)


h(x)=arctan(x)^cot(x)



log h(x) = cotx log tan^-1 x


now derivate


h ' (X) / h(x) = -cscx cotx ln tan^-1 x + [cotx / tan^-1x ] (1/ (1+x^2) )



=> h ' (x) = h(x) [ -cscx cotx ln tan^-1 x + [cotx / tan^-1x ] (1/ (1+x^2) ) ]


=>h ' (x) = arctan(x)^cot(x)[ -cscx cotx ln arctan x + [cotx / arctanx ] (1/ (1+x^2) ) ]




(5)


4thRoot(101) = (101)^(1/4)



nearest 4t root we have is 4th root of 81 = 3



so f(x) = x^(1/4)


f(x + delta x) = f(x) + f ' (x) * delta x


so f( 81 + 20) = f(81) + (1/4)(x^-3/4) * 20


= f(81) + (1/4)(81^-3/4)*20


= 3 + (1/4)(1/27)*20


= 3 + 5/27


=86/27


=3.185