Find an equation of the tangent line to the curve at the given point. y = (4x is
ID: 2829725 • Letter: F
Question
Find an equation of the tangent line to the curve at the given point.
y =
(4x is over x+1)
, (3, 3)
y =
Differentiate.
f(x) = 6
sin x
Differentiate.
g(t) = 2 sec t + 7 tan t
Differentiate.
y =
(5-secx is over tanx)
y' =
Differentiate.
y = 4x2 sin x tan x
y' =
Find the derivative of the function.
F(x) = (x4 + 5x2 ? 7)9
F'(x)
Find the derivative of the function.
f(t) =
f(t) =
Find the derivative of the function.
f(x) = (2x ? 8)4(x2 + x + 1)5
Find the derivative of the function.
y =
Find the derivative of the function.
f(t) =
(t is over t^2 +6)
4x x + 1Explanation / Answer
1) y = 4x/(x+1)
dy/dx = d(4x/x+1)/dx = x+1*d(4x) - 4x(d(x+1))/(x+1^2) = 4x+4-4x/(x+1^2) = 4/(x+1^2) at (3,3) = 4/(3+1^2) = 1/4
therefore the slope of tangent is 1/4
equation of tangent with slope 1/4 and passing through point (3,3) is :-
y-3 = 1/4*(x-3) = 4y = x+9
2) y = 6*sqrt(x)*sinx
dy/dx = d(6*sqrt(x)*sinx/dx = 6*1/2 *1/(sqrt(x)*(sinx) + 6*sqrt(x)*cosx
3) g(t) = 2 sec t + 7 tan t
dg(t)/dt = 2d(sect)/dt + 7d(tant)/dt = 2*sec t*tan t + (7*(tan t)^2)
4) y = (5- sec x)/tan x = 5*cot x - cosec x
dy/dx = 5*d(cot x)/dx - d(cosec x)/dx = 5*(-cosec x)^2 - (-cot x*cosec x) = -5+cos x /(sin x^2)
5) y = 4x2 sin x tan x
dy/dx = sin x*tan x*d(4x2) / dx + 4x2* sin x d(tan x)/dx + 4x2*tan x*d(sin x)/dx
= sin x *tan x *8x + 4x2*sinx *(sec2x) + 4x2*tan x*cos x
6) F(x) = (x4 + 5x2 - 7)9
d(F(x))/dx = d( (x4 + 5x2 ? 7)9/dx = 9*(x4 + 5x2 - 7)8*(4x^3 +10x)
7) y = (2+tant)^1/6
dy/dt = d((2+tant)^1/6)/dt = 1/6*(2+tant)^(-5/6)*(sec^2 x)
8) f(x) = (2x - 8)4(x2 + x + 1)5
d(f(x)/dx = (x2 + x + 1)5*(4*(2x - 8)3*2) + (2x - 8)4*5*(x2 + x + 1)4*(2x+1)
9) f(x) = ((x^2+4)/(x^2-4))^5
f'(x) = 5*((x^2+4)/(x^2-4))^4*(x^2-4*(2x) -(x^2+4*(2x)))/((x^2-4)^2) = 5*((x^2+4)/(x^2-4))^4*((-16x)/((x^2-4)^2)
10) f(t) = sqrt(t/(t2 +6)
f'(t) = 1/2*(1/sqrt(t/(t2 +6)) * [((t2+6)*1 - t*(2t)) / (t2 +6)2]
f'(t) = 1/2*(1/sqrt(t/(t2 +6))*[(6 - t2 / (t2 +6)2]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.