Given a first-order plus delay odeltels, C(s) Kp, in the following closed- loop
ID: 2291122 • Letter: G
Question
Given a first-order plus delay odeltels, C(s) Kp, in the following closed- loop control system block diagram where H(s)-1, no noise and no disturbance Using MATLAB Simulink Task Only one simulation. This time, L-10. Use ZN tuned PID controller. Please apply Smith Predictor (SP) control scheme using the nominal plant model G(s) e-Lswith exact L-10. Make a plot with two responses, one for without SP control (you have done this one in part-2), and one for with SP control scheme. 1+s Disturbance Manipulated d(t Controlled Variable (Output)y(t) Reference Actuating Variable Signal Input Setpoint) Controller and Plant Contro ult Elements C(s) GIs) n(t) eedback Signal Feedback Elements H(s)Explanation / Answer
endebj = dfe(nfwweights,nfbkweghts,alg)
eqob = dfe(nwdweights,nfbkweights,alg,sigconst)
eqoj = dfe(nfwweights,nfbkwehts,alg,sigonst,namp)
M = 4; % Alhabet size for modution
msg = rand([0 M-1],250,1); % Ranssage
Mod = comm.QPSKMulator('PhaseOset',0);
modsg = hMod(mg); % ModulaSK
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(cha,1,modmsg); % Introduce channel distortion
?betf=0.0001;
beta=0.0001;
% Coeff init. Ck for FFE and Dk for DFE
ck=zers(1,tapsfe);
ck(7)=1;
dk=zeros(1,tapsdf);
% Signal to filtering
rk=zeros(1,tapsffe);
% Filtered s or
n=lengt(s6);
s7=zers(1,n);
e7=zers(1,n);
for k=1:n
rk = [s6(k), rk(1:taps1)]; % FILTERING in FFE
% output
ykf = sum(rk.*ck);
ykd = sum(ak.*dk);
yk = ykf-ykd;
% Slicer for QPSK.R = 1.
dec = (-1*(real(yk)<0)+1*(real(yk)>=0) + 1i*(-1*(ig(yk)<0)+1*(imag(yk)>=0)))/sqrt(2);
s7(k) = dec;
% Error:
error = dec-yk;
e7(k) = error;
% Coefficient adaptation
ck = ck - betaf*erconj(rk);
dk = dk + betab*eor*conj(ak);
ak = [dec, ak(1:tapsdfe-1)];
end
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.