Please help me find the electrical field generated by these gaussian spheres. Th
ID: 2275182 • Letter: P
Question
Please help me find the electrical field generated by these gaussian spheres. Thanks!
Two spherical charge distributions sit on the x-axis so that they touch at the origin. Each sphere has radius R. Their volume charge densities depend on radius according to the formulas rho 1 = A/r and rho 2 = -B/r where A and B are positive contants with unit . With these charge distribution function, the charge inside Gaussian spheres of radius r drawn within the distribution are: q = 2 pi Ar 2 and q = 2 pi Br 2. Consider the electric field created by each sphere of charge and write the electric field vector for point P, Q, R, and S in terms of A, B, R, and epsilon 0. The exact coordinates are: P (-R, 0) Q (-R/2, ) R (0, 0) S (R, R) T (0, R)Explanation / Answer
Note: e0 = epsilon0
---------------------------------------------------------------------
POINT "P":
Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)
Ex = (0)/(4 pi e0 R^2) + (2 pi B R^2)/(4 pi e0 (2R)^2)
Ex = (B)/(8 e0)
Ey = 0
Vector:
==> E(P) = ((B)/(8 e0) i^ + 0 j^
---------------------------------------------------------------------
POINT "Q":
Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)
q1 = (2 pi A R^2) * (pi (R/2)^2)/(pi R^2) = (2 pi A R^2) * (1/4) = (1/2) pi A R^2
Ex = ((1/2) pi A R^2)/(4 pi e0 (R/2)^2) + (2 pi B R^2)/(4 pi e0 (3R/2)^2)
Ex = ((1/2) pi A)/(4 pi e0 (1/2)^2) + (2 pi B)/(4 pi e0 (3/2)^2)
Ex = (A)/(2 e0) + (2 B)/(9 e0)
Ey = 0
==> E(Q) = (A)/(2 e0) + (2 B)/(9 e0) i^ + 0 j^
---------------------------------------------------------------------
POINT "R":
Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)
Ex = (2 pi A R^2)/(4 pi e0 R^2) + (2 pi B R^2)/(4 pi e0 R^2)
Ex = (A)/(2 e0) + (B)/(2 e0)
Ex = (A + B)/(2 e0)
Ey = 0
Vector:
==> E(R) = ((A + B)/(2 e0) i^ + 0 j^
---------------------------------------------------------------------
POINT "S":
Ex = q1/(4 pi e0 r1^2) cos(theta)
Ex = (2 pi A R^2)/(4 pi e0 (5 R^2)) * (2/(sqrt(5)))
Ex = (A)/(5 sqrt(5) e0)
Ey = q1/(4 pi e0 r1^2) sin(theta) - q2/(4 pi e0 r2^2)
Ey = (2 pi A R^2)/(4 pi e0 (5 R^2)) * (1/(sqrt(5))) - (2 pi B R^2)/(4 pi e0 (2R)^2)
Ey = (A)/(10 sqrt(5) e0) - (B)/(8 e0)
Vector:
==> E(S) = ((A)/(5 sqrt(5) e0) i^ + ((A)/(10 sqrt(5) e0) - (B)/(8 e0)) j^
---------------------------------------------------------------------
POINT "T":
Ex = q1/(4 pi e0 r1^2) cos(45) + q2/(4 pi e0 r2^2) cos(45)
Ex = (2 pi A R^2)/(4 pi e0 (sqrt(2) R)^2) (sqrt(2)/2) + (2 pi B R^2)/(4 pi e0 (sqrt(2) R)^2) (sqrt(2)/2)
Ex = (sqrt(2) A)/(8 e0) + (sqrt(2) B)/(8 e0)
Ex = (sqrt(2) (A + B))/(8 e0)
Ey = 0
Vector:
==> E(T) = (sqrt(2) (A + B))/(8 e0) i^ + 0 j^
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.