Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

3- Write a MATLAB program to study the effect of voltage variation for the (T-N)

ID: 2266399 • Letter: 3

Question

3- Write a MATLAB program to study the effect of voltage variation for the (T-N)

characteristics of three phase induction motor.
4- Write a MATLAB program to study the effect of rotor resistance control for the (T-N) characteristics of three phase wound rotor induction motor.
5- Without rewiring the program in questions 3 and 4 show that how the speed control of three phase   induction motor can be achieved.

4 Ohms 3 Ohms 2-Using loop analysis and MATLAB, find the loop currents What is the power supplied by the source? 2 Ohms 4 Ohms 2 Ohms 2 Ohms 3 Ohms 4 Ohms 3- Write a MATLAB program to study the effect of voltage variation for the (T-N) characteristics of three phase induction motor. 4- Write a MATLAB program to study the effect of rotor resistance control for the (T-N) characteristics of three phase wound rotor induction motor 5- Without rewiring the program in questions 3 and 4 show that how the speed control of three phase induction motor can be achieved.

Explanation / Answer

fprintf(

'

n

n'

);

ph=input(

'

n no of phases=

n'

);

p=input(

'power in KW=

n'

);

v=input (

'voltage in volts=

n

'

);

f=input(

'frequency on hz=

n'

);

po=input(

'no of poles=

n'

);

Bav=input(

'bav in Wb/m2=

n'

);

q=input(

'ac in a/m=

n'

);

Kw=input(

'winding factor=

n'

);

pf=input(

'power facot=

n'

);

eff=input(

'eff of m/c=

n'

);

% to find speed

Ns=(f*120)/po;

ns=(2*f)/po;

% to fi

nd output co

-

efficient

Co=11*Kw*Bav*q*10^

-

3;

% to find input KVA

Q=p/(eff*pf);

% to find D and L

D=abs((Q/(Co*ns))/1.18)^(1/3);

L=1.18*D;

% to find pole pitch

pp=(pi*D)/po;

iron=input(

'iron factor='

);

% Li

-

net length

Li=(L

-

2*0.01)*iron;

pspeed=(pi*D*ns);

fprintf(

'

n

n'

);

fprintf(

'

n DIAMETER AND NET LENGTH OF THE

INDUCTION MOTOR

n'

);

fprintf(

'

n

n'

);

fpri

ntf(

'

n THE DIAMETER OF THE INDUCTION

MOTOR=%.6f METERS

n'

,D);

fprintf(

'

n THE NET LENGTH OF THE INDUCTION

MOTOR=%.6f METERS

n'

,Li);

%stator design

% flus per pole

flux=Bav*(pi*D*L)/po;

% turns per phase

Tp=v/(4.44*f*flux*Kw);

% no of stator slots

qs=inpu

t(

'

n no of stator slots per pole per phase=

n'

);

ss=ph*po*qs;

yss=(pi*D)/ss;

sp=ss/ph;

sc=6*Tp;

zss=sc/ss;

cs=ss/po;

fprintf(

'

n THE COIL SPAN OF THE INDUCTION

MOTOR=%.4f

n'

,cs);

evenno=input(

'

n IF THE CS VALUE IS EVEN , THAN

TYPE 2 ELSE ANY OTHER NO=

n'

);

cs1=2;

if

cs1==evenno

alpha=(1/cs)*180;

kp=cos((alpha/2)*(pi/180));

kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/1

80))));

kws=kp*kd;

end

% conductor size

Is=(p*1e3)/(3*v*eff*pf);

IsL=sqrt(3)*Is;

fprintf(

'

n THE STATOR LI

NE CURRENT OF THE

INDUCTION MOTOR=%.4f AMPS

n'

,IsL);

currentdensity=input(

'

ncurrent density corresponding to

stator line current=

n'

);

A=Is/4;

Db=input(

'

nbare diameter in meters ='

);

as=pi/(4*Db^2);

density=Is/as;

fprintf(

'

n THE DENSITY OF STATOR CON

DUCTOR OF

THE INDUCTION MOTOR=%.10f A/M2

n'

,density);

d1=input(

'

n diameter of enamelled conductor

CORRESPONDING TO DENSITY in meters =

n'

);

% slot dimensions

S=zss*as;

sf=input(

'

nspace factor for the slots=

n'

);

As=S/sf;

wts=flux/(1.7*(ss/po)*Li);

Lm

ts=(2*L)+(2.3*((pi*D)/4))+ss;

% flux density in stator teeth

Bmst=flux/((ss/p)*wts*Li);

% flux in stator core

fluxstator=flux/2;

B=input(

'

n flux density of the stator core in wb/m2=

n'

);

Asc=fluxstator/B;

dcs=Asc/Li;

dcd=input(

'core depthin meters =

n'

)

;

Bcs=(dcs/dcd)*1.2;

h=input(

'

nheight of the core in m=

n'

);

lip=input(

'

nlip in meters =

n'

);

wedge=input(

'

nwedge in meters =

n'

);

dss=h+lip+wedge;

Do=D+2*dss+2*dcs;

fprintf();

fprintf(

'

n OUTPUT OF THE STATOR DESIGN OF

INDUCTION MOTOR

n'

);

fprintf(

'

);

fprintf(

'

n THE FLUX PER POLE OF THE INDUCTION

MOTOR=%.4f WB

n'

,flux);

fprintf(

'

n THE ST

ATOR TURNS PER POLE OF THE

INDUCTION MOTOR=%.4f TURNS

n'

,Tp);

fprintf(

'

n THE STATOR WINDING FACTOR OF THE

INDUCTION MOTOR=%.4f

n '

,kws);

fprintf(

'

n THE STATOR CURRENT OF THE

INDUCTION MOTOR=%.4f AMPS

n'

,Is);

fprintf(

'

n THE WIDTH OF THE STATOR TEETH O

F

THE INDUCTION MOTOR=%.4f METERS

n'

,wts);

fprintf(

'

n THE LENGTH OF MEAN TURN OF THE

INDUCTION MOTOR=%.4f METERS

n'

,Lmts);

fprintf(

'

n THE TOTAL FRIC

TION AND WINDIAGE

LOSSES OF THE INDUCTION MOTOR=%.4f

WATTS

n'

,fwl);

fprintf(

'

n THE TOTAL NO LOAD LOSSES OF THE

INDUCTION MOTOR=%.4f WATTS

n'

,Tnll);

fprintf(

'

n THE TOTAL NO LOAD CURRENT PER

PHASE OF THE INDUCTION MOTOR=%.4f AMPS

n'

,I0);

fprintf(

'

n THE

POWER FACTOR OF THE INDUCTION

MOTOR=%.4f

n'

,pfo);

fprintf(

'

n THE PHASE ANGLE OF NO LOAD CURRENT

OF THE INDUCTION MOTOR=%.4f

DEGREES

n'

,phaseangle);

fprintf(

'

n THE EFFICIENCY AT FULL LOAD OF THE

INDUCTION MOTOR=%.4f DEGREES

n'

,eff1);

fprintf(

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote