Answer all clearly and correctly for five stars and best answer. A long, straigh
ID: 2261518 • Letter: A
Question
Answer all clearly and correctly for five stars and best answer.
Explanation / Answer
I = int{J da}
I = int{(J0 r^3/R^4) (2 pi r dr)} ; from r=0 to r=R
I = (2 pi J0/R^4) int{r^4 dr} ; from r=0 to r=R
I = (2 pi J0/R^4) (r^5/5) ; from r=0 to r=R
I = (2 pi J0/R^4) (R^5/5)
==> I = 2 pi J0 R/5
==> J0 = 5 I/(2 pi R)
----------------------------------------------------------------------------------
a)
i = int{(J0 r'^3/R^4) (2 pi r' dr')} ; from r=0 to r'=r
I = (2 pi J0/R^4) int{r'^4 dr'} ; from r=0 to r'=r
I = (2 pi J0/R^4) (r'^5/5) ; from r=0 to r'=r
I = (2 pi J0/R^4) (r^5/5)
B = u0 i/(2 pi r) = u0 ((2 pi J0/R^4) (r^5/5))/(2 pi r) = u0 ((J0/R^4) (r^4/5)) = (u0 J0/R^4) (r^4/5)
==> B = u0 I r^4/(2 pi R^5)
b)
B = u0 I/(2 pi r)
c)
i2 = I ((r)^2 - (Ra)^2))/((Rb)^2 - (Ra)^2))
i_total = I + i2 = I [1 + ((r)^2 - (Ra)^2))/((Rb)^2 - (Ra)^2))]
B = u0 (i_tot)/(2 pi r) = u0 I [1 + ((r)^2 - (Ra)^2))/((Rb)^2 - (Ra)^2))]/(2 pi r)
d)
B = u0 (2 I)/(2 pi r) = u0 I/(pi r)
-----------------------------------------------------------------------------------
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.