Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use MATLAB for the questions. Please show the MATLAB code. Given is the transfer

ID: 2249753 • Letter: U

Question

Use MATLAB for the questions. Please show the MATLAB code.

Given is the transfer function of a linear time invariant system: G(s)-Y(s) = N(s) U(s) D(s) 5-s4+s3-s2+2s+1 1. Find a (any) state-space representation for the system and draw the corresponding block 2. Find the system's eigenvalues and eigenvectors. Is the system stable? Identify the unstable 3. Is the system diagonalizable? If yes, find the matrix T that diagonalizes the system [Note, x(t) 4. diagram. Give the dimensions of A, B, C, D, x(t), u(t) and y(t) modes, if any. = Tzit).] Is the system controllable, observable, stabilizable? Is it reachable and detectable? Find the canonical decomposition of the system, i.e.. C-O, C-nonO, nonC-O, nonC-nonO and write the state-space equations in the corresponding form. 5.

Explanation / Answer

ss = tf('s');
syss = (s + 7)/(s*(s + 5)*(s + 15)*(s + 20));
rlocuss(sys)
axiss([-22 3 -15 15])
zetaa = 0.7;
wnn = 1.8;
sgridn(zeta,wn)
K, = 350;
sys_cl. = feedback(K*sys,1)
step.(sys_cl)
ss = tf('s');
plantt = (s + 7)/(s*(s + 5)*(s + 15)*(s + 20));
wa = logspace(2,5.1,100);
H0. = feedback(frd(G,w),1);
hh = sigmaplot(H0,'b',H1,'g--',H2,'r');
legendd('Reference H0','H1=feedback(G,1)','H2=G/(1+G)','location','southwest')
setoptionss(h,'YlimMode','manual','Ylim',{[-60 0]})
clff
t. = 0:0.01:4;
u. = sin(10*t);
lsimm(sys,u,t)
A = [-0.7 3.6 -2.1;-3 -1.2 4.8;3 -4.3 -1.1];
B = [0; -1.0; -0.2];
C = [1.2 0 0.5];
D = -0.6;
G = ss(A,B,C,D,E);
x0 = [-1;0;1]; % initiall state
initiall(G,x0)
gridd

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote