Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Write in the Racket programming language functions: (a) Graph to define a graph.

ID: 2247618 • Letter: W

Question

Write in the Racket programming language functions: (a) Graph to define a graph. A graph is a list of (node list of nodes) (b) neighbors neighbors(node, graph) = list of nodes neighbors: node graph -> list of nodes to compute node’s neighbors in graph. (c) find-route find-route(node, node, graph) = list of nodes or false find-route: node node graph -> list of nodes or false to compute a list of nodes, starting with the origination node and ending with the destination node in a graph. If there is no path, the value of function is false. Test the program for the graph Example G has no neighbors: empty A has the list of neighbors (B E) Hint (define Graph etc. ) (define (neighbors a-node a-graph) etc. ) (define (find-route origination destination graph) etc. ) Test (define Graph '((A (B E)) (B (E F)) (C (D)) (D ()) (E (C F)) (F (D G)) (G ()))) (find-route 'A 'G Graph) -> (list 'A 'B 'E 'F 'G) (find-route 'C 'G Graph) -> #f

Explanation / Answer

First of all the given problem stated as be written as below drawn:

   A

     /

    /

   B    C

   | /|

   | / |

   D E F

   | /

    |/

     G

(arrows pointing down)

(define mygraph (make-graph

'(a b c d e f g)

(lambda (node)

   (cond

    [(symbol=? node 'a) '(b)]

    [(symbol=? node 'b) '(d e)]

    [(symbol=? node 'c) '(e f)]

    [(member node '(d e f)) '(g)]

    [(symbol=? node 'g) '()])) symbol=?))

A --------> E

        /

   B->C-->D

assume ((graph-neighbor g) 'A) => '(B E)

#include <iostream>

#include <vector>

#include <string>

#include <list>

#include <limits> // for numeric_limits

#include <queue>

#include <utility> // for pair

#include <algorithm>

#include <iterator>

typedef int vertex_t;

typedef double weight_t;

const weight_t max_weight = std::numeric_limits<double>::infinity();

struct neighbor {

    vertex_t target;

    weight_t weight;

    neighbor(vertex_t arg_target, weight_t arg_weight)

        : target(arg_target), weight(arg_weight) { }

};

typedef std::vector<std::vector<neighbor> > adjacency_list_t;

typedef std::pair<weight_t, vertex_t> weight_vertex_pair_t;

void DijkstraComputePaths(vertex_t source,

                          const adjacency_list_t &adjacency_list,

                          std::vector<weight_t> &min_distance,

                          std::vector<vertex_t> &previous)

{

    int n = adjacency_list.size();

    min_distance.clear();

    min_distance.resize(n, max_weight);

    min_distance[source] = 0;

    previous.clear();

    previous.resize(n, -1);

    // we use greater instead of less to turn max-heap into min-heap

    std::priority_queue<weight_vertex_pair_t,

                                                std::vector<weight_vertex_pair_t>,

                                                std::greater<weight_vertex_pair_t> > vertex_queue;

    vertex_queue.push(std::make_pair(min_distance[source], source));

    while (!vertex_queue.empty())

    {

        weight_t dist = vertex_queue.top().first;

        vertex_t u = vertex_queue.top().second;

        vertex_queue.pop();

                // Because we leave old copies of the vertex in the priority queue

                // (with outdated higher distances), we need to ignore it when we come

                // across it again, by checking its distance against the minimum distance

                if (dist > min_distance[u])

                    continue;

        // Visit each edge exiting u

                const std::vector<neighbor> &neighbors = adjacency_list[u];

        for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();

             neighbor_iter != neighbors.end();

             neighbor_iter++)

        {

            vertex_t v = neighbor_iter->target;

            weight_t weight = neighbor_iter->weight;

            weight_t distance_through_u = dist + weight;

                    if (distance_through_u < min_distance[v]) {

                        min_distance[v] = distance_through_u;

                        previous[v] = u;

                        vertex_queue.push(std::make_pair(min_distance[v], v));

                    }

        }

    }

}

std::list<vertex_t> DijkstraGetShortestPathTo(

    vertex_t vertex, const std::vector<vertex_t> &previous)

{

    std::list<vertex_t> path;

    for ( ; vertex != -1; vertex = previous[vertex])

        path.push_front(vertex);

    return path;

}

int main()

{

    // remember to insert edges both ways for an undirected graph

    adjacency_list_t adjacency_list(6);

    // 0 = a

    adjacency_list[0].push_back(neighbor(1, 7));

    adjacency_list[0].push_back(neighbor(2, 9));

    adjacency_list[0].push_back(neighbor(5, 14));

    // 1 = b

    adjacency_list[1].push_back(neighbor(0, 7));

    adjacency_list[1].push_back(neighbor(2, 10));

    adjacency_list[1].push_back(neighbor(3, 15));

    // 2 = c

    adjacency_list[2].push_back(neighbor(0, 9));

    adjacency_list[2].push_back(neighbor(1, 10));

    adjacency_list[2].push_back(neighbor(3, 11));

    adjacency_list[2].push_back(neighbor(5, 2));

    // 3 = d

    adjacency_list[3].push_back(neighbor(1, 15));

    adjacency_list[3].push_back(neighbor(2, 11));

    adjacency_list[3].push_back(neighbor(4, 6));

    // 4 = e

    adjacency_list[4].push_back(neighbor(3, 6));

    adjacency_list[4].push_back(neighbor(5, 9));

    // 5 = f

    adjacency_list[5].push_back(neighbor(0, 14));

    adjacency_list[5].push_back(neighbor(2, 2));

    adjacency_list[5].push_back(neighbor(4, 9));

    std::vector<weight_t> min_distance;

    std::vector<vertex_t> previous;

    DijkstraComputePaths(0, adjacency_list, min_distance, previous);

    std::cout << "Distance from 0 to 4: " << min_distance[4] << std::endl;

    std::list<vertex_t> path = DijkstraGetShortestPathTo(4, previous);

    std::cout << "Path : ";

    std::copy(path.begin(), path.end(), std::ostream_iterator<vertex_t>(std::cout, " "));

    std::cout << std::endl;

    return 0;}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote