The X-ray spectrum for a typical metal is shown in Figure 31-22. Find the approx
ID: 2021491 • Letter: T
Question
The X-ray spectrum for a typical metal is shown in Figure 31-22. Find the approximate wavelength of K X-rays emitted by chromium. (Hint: An electron in the M shell is shielded from the nucleus by the single electron in the K shell, plus all the electrons in the L shell.)
Z=atomic number of chromium (24)
for Ek n1=1
for Em n1=3
Used E= -13.6eV(Z-1)2/n12
Found Ek , Em Used these two values to find E. Converted E to J. Then plugged everything in to this formula =hc/E
Came up with -1.94e-16 and that was wrong.
Where did I go wrong?
Explanation / Answer
atomic number of chromium Z = 24 plank's constant h = 6.63*10-34 J-s speed of light c = 3*108 m/s if an electron drops from n = 3 level to the K-shell (n = 1) , the resulting peak is called the K line. energy of a K -shell (n = 1) electron , EK = -13.6eV(Z-1)2/n2 = -13.6eV(24-1)2/(1)2 = -7194.40 eV energy of a m -shell (n = 3) electron , Em = -13.6eV(Z-1)2/n2 = -13.6eV(24-1)2/(3)2 = -799.37 eV change in energy , E = Ek - Em = -7194.40 eV - (-799.37 eV) = -6395.03 eV (since , 1 eV = 1.6*10-19 J) = -(6395.03*1.6*10-19) J = -10232.048*10-19 J wavelength corresponding to E , = hc / IEI = {(6.63*10-34 J-s)(3*108 m/s)} / I(-10232.048*10-19 J)I = 1.943*10-10 m = 0.1943*10-9 m = 0.1943 nm = -7194.40 eV energy of a m -shell (n = 3) electron , Em = -13.6eV(Z-1)2/n2 = -13.6eV(24-1)2/(3)2 = -799.37 eV change in energy , E = Ek - Em = -7194.40 eV - (-799.37 eV) = -6395.03 eV (since , 1 eV = 1.6*10-19 J) = -(6395.03*1.6*10-19) J = -10232.048*10-19 J wavelength corresponding to E , = hc / IEI = {(6.63*10-34 J-s)(3*108 m/s)} / I(-10232.048*10-19 J)I = 1.943*10-10 m = 0.1943*10-9 m = 0.1943 nm energy of a m -shell (n = 3) electron , Em = -13.6eV(Z-1)2/n2 = -13.6eV(24-1)2/(3)2 = -799.37 eV change in energy , E = Ek - Em = -7194.40 eV - (-799.37 eV) = -6395.03 eV (since , 1 eV = 1.6*10-19 J) = -(6395.03*1.6*10-19) J = -10232.048*10-19 J wavelength corresponding to E , = hc / IEI = {(6.63*10-34 J-s)(3*108 m/s)} / I(-10232.048*10-19 J)I = 1.943*10-10 m = 0.1943*10-9 m = 0.1943 nm = -7194.40 eV - (-799.37 eV) = -6395.03 eV (since , 1 eV = 1.6*10-19 J) = -(6395.03*1.6*10-19) J = -10232.048*10-19 J wavelength corresponding to E , = hc / IEI = {(6.63*10-34 J-s)(3*108 m/s)} / I(-10232.048*10-19 J)I = 1.943*10-10 m = 0.1943*10-9 m = 0.1943 nmRelated Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.