Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A hollow sphere of radius 0.20 m, with rotational inertia I = 0.070 kg m2 about

ID: 2006980 • Letter: A

Question

A hollow sphere of radius 0.20 m, with rotational inertia I = 0.070 kg m2 about a line through its center of mass, rolls without slipping up a surface inclined at 23° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 80 J.
(a) How much of this initial kinetic energy is rotational?
J

(b) What is the speed of the center of mass of the sphere at the initial position?
m/s
Now, the sphere moves 1.0 m up the incline from its initial position.
(c) What is its total kinetic energy now?
J

(d) What is the speed of its center of mass now?
m/s

Explanation / Answer

        Given that the radius of the hallow sphere is R = 0.20 m           The moment of inertia is I = 0.070 kg .m2           The angle of inclination is = 230            The initial kinetic energy is K = 80 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  80 J = (1/2)I( U /R)2 + (1/2)mU2                                                  80 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          80 J = (1/3)m U2 + (1/2)mU2                                                  80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                     Given that the radius of the hallow sphere is R = 0.20 m           The moment of inertia is I = 0.070 kg .m2           The angle of inclination is = 230            The initial kinetic energy is K = 80 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  80 J = (1/2)I( U /R)2 + (1/2)mU2                                                  80 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          80 J = (1/3)m U2 + (1/2)mU2                                                  80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s             Given that the radius of the hallow sphere is R = 0.20 m           The moment of inertia is I = 0.070 kg .m2           The angle of inclination is = 230            The initial kinetic energy is K = 80 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  80 J = (1/2)I( U /R)2 + (1/2)mU2                                                  80 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          80 J = (1/3)m U2 + (1/2)mU2                                                  80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                       The moment of inertia is I = 0.070 kg .m2           The angle of inclination is = 230            The initial kinetic energy is K = 80 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  80 J = (1/2)I( U /R)2 + (1/2)mU2                                                  80 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          80 J = (1/3)m U2 + (1/2)mU2                                                  80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                       The angle of inclination is = 230            The initial kinetic energy is K = 80 J ---------------------------------------------------------------------------             The intiial kinetic energy is K = (1/2)I2 + (1/2)mU2                                                  80 J = (1/2)I( U /R)2 + (1/2)mU2                                                  80 J = (1/2)(2/3)mR2* U2 / R2 + (1/2)mU2                                                          80 J = (1/3)m U2 + (1/2)mU2                                                  80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                                                              80 J = (1/3)m U2 + (1/2)mU2                                                      80 J = (5/6)m U2     -----------(a)                                                  mU2 = 6* 80 J / 5                                                          = 96 J ------------(1)         Then the rotational kinetic energy is (1/2)I2 = K - (1/2)mU2                                                                               = 80 J - ( 96 J /2)                                                                               = 32J                      But the moment of inertia is I = (2/3)mR2                                                           m = 3I / 2R2                                                            = 2.625 kg              From the equation (1) mU2 = 96 J                                                        U = ( 96J / m )1/2                                                            = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                                                               = 9.79 m/s                   This is the speed of the center of mass    (c) if the sphere moves 1.0 m up then                    From the conservation of energy at intiial point and the final point                                      K1 + P.E1 = K2 + P.E2                                                   K2 = K1 + P.E1 - P.E2                                                         = 80 J +(0 - mgh)                                                          = 80 J - mg(1.0m*sin)                                                          = 80 - 10.05                                                          =  69.94   J               This is the final total kinetic energy (d)    From the equation (a) the total kinetic energy is K2 = (5/6)m V2                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                                                                                      V = [ 6*K2* / 5m ]1/2                                                                                           = 5.62m/s                                                                                           = 5.62m/s         
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote