As shown, a mass is being lifted by a strut that is supported by two cables AC a
ID: 1861354 • Letter: A
Question
As shown, a mass is being lifted by a strut that is supported by two cables AC and CD. The dimensions given are a=2.04 ft, b=1.7 ft, c=6.0 ft,d=1.0 ft, and e=2.0 ft.
Explanation / Answer
A(1, 0, 0)
B(0, 2.04, 0)
C(0, 2.04+1.7, 6) = (0, 3.74, 6)
D(-2, 0, 0)
Vector CA = (1, -3.74, -6)
Vector CB = (0, -1.7, -6)
Vector CD = (-2, -3.74, -6)
Magnitude CA = sqrt (1^2 + 3.74^2 + 6^2) = 7.14 ft
Magnitude CB = sqrt(1.7^2 + 6^2) = 6.236 ft
Magnitude CD = sqrt (2^2 + 3.74^2 + 6^2) = 7.348 ft
Unit Vector along CA = (1, -3.74, -6) / 7.14
Unit Vector along CB = (0, -1.7, -6) / 6.236
Unit Vector along CD = (-2, -3.74, -6) / 7.348
Forces equilibrium:
F_CA + F_CB + F_CD + W = 0
F_CA* (i -3.74 j - 6k) / 7.14 + F_CB*(-1.7 j - 6 k) / 6.236 + F_CD*(-2 i - 3.74 j - 6 k) / 7.348 + (-120 k) = 0
Thus,
F_CA/7.14 - 2/7.348*F_CD = 0
-3.74/7.14*F_CA - 1.7/6.236*F_CB - 3.74/7.348*F_CD = 0
(-6/7.14)*F_CA + (-6/6.236)*F_CB + (-6/7.348)*F_CD = 120
Solving them,
F_CA = 79.33 lb
------------------------------------------------
Forces equilibrium:
F_CA + F_CB + F_CD + W = 0
F_CA* (i -3.74 j - 6k) / 7.14 + (-700)*(-1.7 j - 6 k) / 6.236 + F_CD*(-2 i - 3.74 j - 6 k) / 7.348 + (-W k) = 0
Thus,
(1/7.14)*F_CA - (2/7.348)*F_CD = 0
(-3.74/7.14)*F_CA + (700*1.7/6.236) + (-3.74/7.348)*F_CD = 0
(-6/7.14)*F_CA + (700*6/6.236) + (-6/7.348)*F_CD = W
Solving them, W = 367.37 lb
-------------------------------------------------------
Forces equilibrium:
F_CA + F_CB + F_CD + W = 0
F_CA* (i -3.74 j - 6k) / 7.14 + F_CB*(-1.7 j - 6 k) / 6.236 + F_CD*(-2 i - 3.74 j - 6 k) / 7.348 + (-W k) = 0
Thus,
F_CA/7.14 - 2/7.348*F_CD = 0
-3.74/7.14*F_CA - 1.7/6.236*F_CB - 3.74/7.348*F_CD = 0
(-6/7.14)*F_CA + (-6/6.236)*F_CB + (-6/7.348)*F_CD = W
Solving them,
F_CD = 0.5145*F_CA
F_CB = -2.882*F_CA
F_CA = 0.6611*W
Therefore,
F_CA = 0.6611*W
F_CB = -1.905*W
F_CD = 0.34*W
Thus, for given W, highest force is in CB.
If F_CB = -1000 lb, we get W = 524.9 lb, F_CA = 347 lb, F_CD = 178.5 lb
We notice that F_CA > 300 lb limit.
Thus we get that F_CA = 300 lb.
Therefore, W = 453.8 lb
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.