Reduce the second order differential equation (given in the image) to a system o
ID: 1860584 • Letter: R
Question
Reduce the second order differential equation (given in the image) to a system of first order differential equations and solve the equations using the FOURTH ORDER Runge-Kutta Method for simultaneous equations, to evaluate y(1.2) taking h=0.2 and 0.1, using the following values:
a = + 10
b = + 3
c = + 30
k1 = + 25
k2 = - 4.5
Second Order Differential Equation:
y" + ay' + by = c
With Initial Conditions:
y(1) = k1, [(y')_x=1_] = k2
Explanation / Answer
y'' + ay' + by = c
y(1) = k1
y'(1) = k2
We have, a = 10, b = 3, c = 30, k1 = 25, k2 = -4.5
Thus,
y'' + 10y' + 3y = 30
y(1) = 25
y'(1) = -4.5
Put y' = z.............(1)
y(1) = 25
Thus, z' + 10z + 3y = 30
z' = 30 - 10z - 3y.................(2)
z(1) = -4.5
We have h = 0.2,
y(1.2) = y(1 + 0.2) = y(1) + (1/6)*(k1,1 + 2k2,1 + 2k3,1 + k4,1)
z(1.2) = z(1 + 0.2) = z(1) + (1/6)*(k1,2 + 2k2,2 + 2k3,2 + k4,2)
where
k1,1 = h*z(1)
k1,2 = -h*1*y(1)
k2,1 = h[z(1) + (1/2)k1,2]
k2,2 = -h*(1 + h/2)[y(1) + (1/2)k1,2]
k3,1 = h*[z(1) + (1/2)*k2,2]
k3,2 = -h*(1 + h/2) [y(1) + (1/2)k2,2]
k4,1 = h*[z(1) + k3,2]
k4,2 = -h*(1 + h)[y(1) + k3,2]
Putting values,
k1,1 = 0.2*(-4.5) = -0.9
k1,2 = -0.2*1*25 = -5
k2,1 = 0.2*[-4.5 + (1/2)*(-5)] = -1.4
k2,2 = -0.2*(1 + 0.2/2)*[25 + (1/2)*(-5)] = -4.95
k3,1 = 0.2*[-4.5 + (1/2)*(-4.95)] = -1.395
k3,2 = -0.2*(1+0.2/2)*[25 + (1/2)*(-4.95)] = -4.9555
k4,1 = 0.2*[-4.5 + (-4.9555)] = -1.8911
k4,2 = -0.2*(1+0.2)[25 + (-4.9555)] = -4.81068
Thus, y(1.2) = 25 + (1/6)[-0.9 + 2*(-1.4) + 2*(-1.395) + (-1.8911)]
y(1.2) = 23.60315
Taking h = 0.1, we get
k1,1 = 0.1*(-4.5) = -0.45
k1,2 = -0.1*1*25 = -2.5
k2,1 = 0.1*[-4.5 + (1/2)*(-2.5)] = -0.575
k2,2 = -0.1*(1+0.1/2)[25 + (1/2)*(-2.5)] = -2.49375
k3,1 = 0.1*[-4.5 + (1/2)*(-2.49375)] = -0.5746875
k3,2 = -0.1*(1+0.1/2)[25 + (1/2)*(-2.49375)] = -2.494078125
k4,1 = 0.1*[-4.5 + (-2.494078125)] = -0.6994078125
k4,2 = -0.1*(1+0.1)*[25 + (-2.494078125)] = -2.47565140625
y(1.1) = 25 + (1/6)*[-0.45 + 2*(-0.575) + 2*(-0.5746875) + (-2.4765140625)]
y(1.1) = 24.129162265625
z(1.1) = -4.5 + (1/6)*[-2.5 + 2*(-2.49375) + 2*(-2.494078125) + (-2.47565140625)]
z(1.1) = -6.991884609375
Next iteration, y(1.2) = y(1.1 + 0.1)
k1,1 = 0.1*(-6.991884609375) = -0.6991884609375
k1,2 = -0.1*1.1*24.129162265625 = -2.65420784921875
k2,1 = 0.1*[-6.991884609375 + (1/2)*(-2.65420784921875)] = -0.8318988533984375
k2,2 = -0.1*(1.1+0.1/2)[24.129162265625 + (1/2)*(-2.65420784921875)] = -2.622236709216796875
k3,1 = 0.1*[-6.991884609375 + (1/2)*(-2.622236709216796875)] = -0.83030029639833984375
k3,2 = -0.1*(1.1 + 0.1/2)*[24.129162265625 + (1/2)*(-2.622236709216796875)] = -2.6240750497669091796875
k4,1 = 0.1*[-6.991884609375 + (-2.6240750497669091796875)] = -0.96159596591419091796875
y(1.2) = y(1.1 + 0.1) = 24.129162265625 + (1/6)*[-0.6991884609375 + 2*(-0.8318988533984375) + 2*(-0.83030029639833984375) + (-0.96159596591419091796875)]
y(1.2) = 23.298298477884125732421875
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.