Any help will be rated, thanks! For the feedback system shown in Figure 1 with t
ID: 1852664 • Letter: A
Question
Any help will be rated, thanks!
For the feedback system shown in Figure 1 with the following transfer Junctions P(S) 1 / (s + l)(s + 3)(s+ 10), C(s) = K (1) follow the design steps. Sketch the root locus. Find, the two dominant (second-order) closed-loop poles for which the system acts with a damping ratio of zeta = 0.5. That is, (i) find the intersection with the root locus, (ii) find the location of the third pole, (iii) judge whether the second-order approximation is valid (how far is the third pole from the dominant second-order poles). Compute the steady-state error for unit step input. Design a PI controller C(s) = K(s + 0.1) / s such that the steady-state error goes to zero for unit step input Figure 1: Unity feedback closed-loop system.Explanation / Answer
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0CDsQFjAC&url=http%3A%2F%2Fsydney.edu.au%2Fengineering%2Faeromech%2FAMME3500%2FCourse_documents%2Fmaterial%2Flectures%2Froot%2520locus.pdf&ei=CwG-UKybOsnUrQelhYHgDw&usg=AFQjCNHlz_XiO2fCqq1NIpA5_yjL7-5yBQ&sig2=nJYXkuXUh9uIq7teur4znQ&cad=rja http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=6&ved=0CEoQFjAF&url=http%3A%2F%2Fnkumbwa.weebly.com%2Fuploads%2F3%2F7%2F1%2F6%2F3716285%2Flecture4_root_locus_method.ppt&ei=CwG-UKybOsnUrQelhYHgDw&usg=AFQjCNGNOMyngb7yabhhxepMspZ6F6e0JA&sig2=z3AgQ0bj7qVhiiYShDX0KQ&cad=rja these may help you
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.