Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question#1: Start with where the Region of Convergence for X(z) is |z| > 3. Perf

ID: 1812113 • Letter: Q

Question

Question#1:

Start with

where the Region of Convergence for X(z) is |z| > 3. Perform the inverse z-transform (using any method you choose) to find an expression for x(n). Select the correct answer from the list below.

a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)

b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)

c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)

d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)

--------------------------------------------------------------------------------

Question#2:

Start with

where the Region of Convergence for X(z) is 2 < |z| < 3. Perform the inverse z-transform (using any method you choose) to find an expression fo x(n). Select the correct answer from the list below.

a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)

b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)

c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)

d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)

-------------------------------------------------------------------------------

Question #3:

Start with

where the Region of Convergence for X(z) is |z| < 2. Perform the inverse z-transform (using any method you choose) to find an expression for x(n). Select the correct answer from the list below.

a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)

b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)

c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)

d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)

-----------------------------------------------------------------------------------------

Question #4:

Start with

where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of A

-----------------------------------------------------------------------------------

Question #5:

Start with

where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of B.

----------------------------------------------------------------------------------

Question #6:

Start with

where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of C.

----------------------------------------------------------------------------------

Question #7:

Start with

where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of A

------------------------------------------------------------------------------------

Question #8:

Start with

where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of B.

------------------------------------------------------------------------------------

Question #9:

Start with

where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of C.

-----------------------------------------------------------------------------------

Explanation / Answer

Send the pics to frodogondor@gmal.com.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote