Question#1: Start with where the Region of Convergence for X(z) is |z| > 3. Perf
ID: 1812113 • Letter: Q
Question
Question#1:
Start with
where the Region of Convergence for X(z) is |z| > 3. Perform the inverse z-transform (using any method you choose) to find an expression for x(n). Select the correct answer from the list below.
a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)
b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)
c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)
d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)
--------------------------------------------------------------------------------
Question#2:
Start with
where the Region of Convergence for X(z) is 2 < |z| < 3. Perform the inverse z-transform (using any method you choose) to find an expression fo x(n). Select the correct answer from the list below.
a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)
b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)
c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)
d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)
-------------------------------------------------------------------------------
Question #3:
Start with
where the Region of Convergence for X(z) is |z| < 2. Perform the inverse z-transform (using any method you choose) to find an expression for x(n). Select the correct answer from the list below.
a) x(n) = (1/5)(-2)n u(n) + (1/5)(3)n u(n)
b) x(n) = -(1/5)(-2)n u(n) + (1/5)(3)n u(n)
c) x(n) = (1/5)(-2)n u(-n-1) - (1/5)(3)n u(-n-1)
d) x(n) = -(1/5)(-2)n u(n) - (1/5)(3)n u(-n-1)
-----------------------------------------------------------------------------------------
Question #4:
Start with
where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of A
-----------------------------------------------------------------------------------
Question #5:
Start with
where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of B.
----------------------------------------------------------------------------------
Question #6:
Start with
where the Region of Convergence of X(z) is 1 < |z| < 3. The corresponding x(n) has the following form: x(n)= A%u2202(n) + Bu(n) + C(3n) u(-n-1). Determine the value of C.
----------------------------------------------------------------------------------
Question #7:
Start with
where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of A
------------------------------------------------------------------------------------
Question #8:
Start with
where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of B.
------------------------------------------------------------------------------------
Question #9:
Start with
where the Region of Convergence of X(z) is |z| >.75. The corresponding x(n) has the following form: x(n) = [A (.5)n + n(B)(n-1) + C(-.75)n] u(n). Determine the value of C.
-----------------------------------------------------------------------------------
Explanation / Answer
Send the pics to frodogondor@gmal.com.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.