-) A very long, nonconducting cylindrical shell has an inner radius A, an outer
ID: 1792656 • Letter: #
Question
-) A very long, nonconducting cylindrical shell has an inner radius A, an outer radius B, and a nonuniform charge density given by (r)-+ re-r where and are constants. The nonconducting spherical shell is surrounded by a concentric, nonconducting cylindrical shell with inner radius B, outer radius C and uniform charge density such that the magnitude of the electric field for r> C is zero. a. b. c. d. What is the total charge contained in the first cylindrical shell? What is the charge density in the second cylindrical shell? What is the magnitude of the electric field for AExplanation / Answer
given a very long , non conducting cylindrical shell, inner radius A, outer radius B
charge density rho(r) = 3*alpha/r^2 + r*e^(-beta*r)
another non conducting shell, inner radius B, outer radius C
uniform charge density rho
E r > C = 0
a. total charge in the first shell = Q
dQ = 2*pi*r*dr*l*rho(r)
dQ = 2*pi*l*r*[3*alpha/r^2 + r*e^(-beta*r)]dr [ l is length of the cyulinder]
integrating form r = A to r = B
Q = 2*pi*l[3*alpha*ln(B/A) + e^(-beta*B)[-2/beta^3 - 2B/beta^2 - B^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]
b. charge density in second shell = rho
now, E for r > C = 0
hence form gasuss law
charge on outer shell + charge on inner shell = 0
hence
rho = -Q/pi(C^2 - B^2)l = -2[3*alpha*ln(B/A) + e^(-beta*B)[-2/beta^3 - 2B/beta^2 - B^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]/(C^2 - B^2)
c. for A < r < B
from gauss' law
E*2*pi*r*l = 2*pi*l[3*alpha*ln(r/A) + e^(-beta*r)[-2/beta^3 - 2r/beta^2 - r^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]/epsilon
E = [3*alpha*ln(r/A) + e^(-beta*r)[-2/beta^3 - 2r/beta^2 - r^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]/epsilon*r
d. for B < r < C
fomr gauss' law
E*2*pi*r*l = [2*pi*l[3*alpha*ln(r/A) + e^(-beta*r)[-2/beta^3 - 2r/beta^2 - r^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]] - 2pi*l(r^2 - B^2)*l[3*alpha*ln(B/A) + e^(-beta*B)[-2/beta^3 - 2B/beta^2 - B^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]/(C^2 - B^2)]/epsilon
E = [[3*alpha*ln(r/A) + e^(-beta*r)[-2/beta^3 - 2r/beta^2 - r^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]] - (r^2 - B^2)*l[3*alpha*ln(B/A) + e^(-beta*B)[-2/beta^3 - 2B/beta^2 - B^2/beta] - e^(-beta*A)[-2/beta^3 - 2A/beta^2 - A^2/beta]]/(C^2 - B^2)]/epsilon*r
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.