We are learning about relative motion 2D in my physics class and were given the
ID: 1593676 • Letter: W
Question
We are learning about relative motion 2D in my physics class and were given the question:
A bird wishes to fly due north with a speed of 10 m/s relative to the ground. There is a wind directed from southwest to northeast with a speed of 5 m/s. How fast must the bird fly relative to the wind and at what angle must the bird aim at the wind?
Im not sure if i did it right. I used the vector eqation: Vbw = Vb - Vw. Then broke it up into compenents: Vbwx = Vbx - Vwx and Vbwy = Vby - Vwy. For my Vbwx and Vbwy I got 3.5m/s for each one. I found it by assuming that the wind made a 45-45-90 triangle, and used to it to find the Vwx and Vwy. Not sure if I am suppose to do it like that. After that I plugged those into my components equations and then used a^2+b^2 = c^2 to find the velocity of Vbw and got 7.4 m/s. Then i found the angle to be 28 degrees. Again im not sure if I did this problem right.
Explanation / Answer
Yest, You have done it correctly :). For explanation ->
We have to break the wind's velocity into two components
which will both be 5/root(2) = 3.535 m/s
Now bird should move 10m/s with respect to ground in north direction.
Hence bird should not move at all in east-west direction with respect to ground, hence it should move with 3.535m/s in west direction with respect to wind.
Similarly in north direction, velocity with respect to ground is 10m/s; since wind is already moving at 3.535, so bird needs extra 10-3.535 to make it. hence 6.465 m/s
For net velocity we can square these two and add and take root, which gives us, ~7.4 m/s. This should be in north-west direction
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.