Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Three point charges are arranged in a horizontal line as shown below. Find the e

ID: 1587261 • Letter: T

Question

Three point charges are arranged in a horizontal line as shown below. Find the electric forces (in units of kQ2/R2) on the charges given the following: Q1 = 100 Q, Q2 = -5 Q, Q3 = 36 Q, r1 = 5 R, and r2 = 1 R. Remember that a positive force points to the right and a negative force points to the left.

What is the net force on charge Q1?
_________kQ2/R2

What is the net force on charge Q2?
______kQ2/R2

What is the net force on charge Q3?
______kQ2/R2

What is the sum of the forces on all three charges?

______ kQ2/R2

Explanation / Answer

Unfortunately their figure doesn't look, but with data from your writing I'm going to build the graph

   +Q3                               +Q1                 - Q2

    .                      r1 r2

Data

Q1 = 100 Q

Q2 = - 5Q

Q3 = 36 Q

. r1 = 5R

. r2 = 1 R

Part A   net force about Q1

        

                                                                        --------- > F12

                                                                        -------- > F13

             +Q3                                          + Q1                                           - Q2

    .                                     r1                                         r2

We calculate the power using the sum with Newton's law and coulomb's law

    Fn= F12 + F13

Fn = k q1 q2 / r22 + k q1 q3 / r12

We substitute the given values

Fn = k q2 q1/ (R)2 + kq1 q3/ (5R)2)       Fn = k ( 5Q 100Q/R2 + 100Q 36Q/25R2

Fn = k (500QQ/R2 + 144QQ/ R2        Fn = kQ2 /R2 ( 244 )

Part B

                                                                                              F32 < --------            

                                                                                              F12 < ----------

             +Q3                                          + Q1                                           - Q2

    .                                     r1                                         r2

Fn= - F32 – F12

Fn = - k q3 q2/(r1 +r2)2 – k q1 q2/r22        Fn = - k ( 36Q 5Q /(5R+R)2 + 100Q 5Q/ R2)

Fn = - k Q2/R2   ( 180QQ/62 + 500Q2 )       Fn = -    k Q2 /R2 ( 505)

Fn = - k Q2/R2    (-505)

Part C

F32 -------- >           

F31 <-------

             +Q3                                          + Q1                                           - Q2

    .                                     r1                                         r2

Fn= F32 – F31

Fn = k q3q2/(r1+r2)2 - k q3 q1/r12                  Fn = k ( 5Q 36Q/(5R+R)2 – 36Q 100Q/(5R)2

Fn = K (5QQ/R2 - 3600/25 Q/R2              Fn = k Q2/R2   (5 - 144)

Fn = k Q2/R2   ( - 139)

Part d

Join all the previous results

Fn   =k Q2/R2 (244 -505 - 139)

Fn = k Q2 /R2 ( -400 )   

I hope that this is the case any other setting should only change the signs

Another possible configuration is

+Q1        +Q3         -Q2

    .      r1             r2

Part A                    (r1+r2) = 5R+R = 6R

       ------ > F12

       ------ > F13

+Q1        +Q3         -Q2

    .      r1             r2

Fn = F12+ F13       Fn = k q1q2/(r1+r2)2 + k q1 q3/r1      Fn = k (q1q2/(6R)2 + q1q3/q2 R2)

Fn = k /R2 (100Q 5Q/36+100Q 36Q )                       Fn= k Q/R2 3613.9

Part B

                         <------   F23

                         <------ F21

+Q1        +Q3         -Q2

    .      r1             r2

Fn= - F23- F21= - ( F23+F21)     Fn = - k (q2q3/r22 + q1q2/(r1+r2)2)

Fn = - k ( 5Q 36Q/R2 +100Q5Q/36R2)           Fn = k Q/R2 (- 193Q)

Part C

    <--- ---   F13

                 ------ > F32

+Q1        +Q3         -Q2

    .      r1             r2

Fn = F32 – F13       Fn = k ( q3q2/r22 – q1 q3/(r1+r2) Fn = k ( 36Q5Q/R2 – 100Q 36Q/ 36R2)

Fn = k Q2 /R2 ( 180– 100)                Fn = k Q2 /R2 (80)

I think that these are the two most probable configurations

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote