Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Find the rotational inertia of the system of point particles shown in the figure

ID: 1554346 • Letter: F

Question

Find the rotational inertia of the system of point particles shown in the figure assuming the system rotates about the (a) x -axis, (b) y -axis, (c) z -axis. The z -axis is perpendicular to the xy -plane and points out of the page. Point particle A has a mass of 200 g and is located at (x, y, z) = (-5.0 cm, 4.0 cm, 0), point particle B has a mass of 300 g and is at (7.0 cm, 0, 0), and point particle C has a mass of 600 g and is at (-6.0 cm, -6.0 cm, 0). (d) What are the x and y -coordinates of the center of mass of the system? (a) I_x = g middot cm^2 (b) I_y = g middot cm^2 (c) I_z = g middot cm^2 (d) (x, y) = (cm, cm)

Explanation / Answer

here,

m1 = 200 g

m2 = 300 g

m3 = 600 g

a)

the moment of inertia about x axis , Ix = m1 * 4^2 + m2 * 0^2 + m3 * (6^2)

Ix = 200 * 4^2 + 0 + 600 * 6^2 g.cm^2

Ix= 24800 g.cm^2

b)

the moment of inertia about y axis , Iy = m1 * 5^2 + m2 * 7^2 + m3 * (6^2)

Iy = 200 * 5^2 + 300 * 7^2 + 600 * 6^2 g.cm^2

Iy = 41300 g.cm^2

c)

the moment of inertia about z axis , Iz = m1 * (5^2 + 4^2) + m2 * 7^2 + m3 * (6^2 + 6^2)

Iz = 200 * (5^2 + 4^2) + 300 * 7^2 + 600 * (6^2 + 6^2)

Iy = 66100 g.cm^2

d)

the x coordinate of centre of mass , x = (m1 *x1 + m2*x2 + m3*x3 ) /(m1 + m2 + m3)

x = ( 200 * (-5) + 300 * 7 - 600 * 6) /( 200 + 300 +600)

x = - 2.27 cm

the y coordinate of the centre of mass , y = (m1 *y1 + m2*y2 + m3*y3 ) /(m1 + m2 + m3)

y = ( 200 * (4) + 300 * 0 - 600 * 6) /( 200 + 300 +600)

y = - 2.54 cm

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote