A 44.0-kg projectile is fired at an angle of 30.0° above the horizontal with an
ID: 1529636 • Letter: A
Question
A 44.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 1.34 102 m/s from the top of a cliff 152 m above level ground, where the ground is taken to be y = 0. (a) What is the initial total mechanical energy of the projectile? J (b) Suppose the projectile is traveling 95.0 m/s at its maximum height of y = 339 m. How much work has been done on the projectile by air friction? J (c) What is the speed of the projectile immediately before it hits the ground if air friction does one and a half times as much work on the projectile when it is going down as it did when it was going up? m/s
Explanation / Answer
a.) Initial total energy = Kinetic energy + Potential Energy = 0.5 mv2 + mgh = 0.5 x 44x 1.341022 + 44x9.81 x 152
= 65648.84336 J
b.) Gain in total energy is the work done by air resistance.
Work done by air = total energy at highest point - Initial Total energy
= (Kinetic energy at hghest point + Potential energy at highest point) - 65648.84336
= ( 0.5 x 44 x 952 + 44 x 9.81x 339 ) - 65648.84336 = 344875.96 - 65648.84336 = 279227.1166 J
c.) If air does 1.5 times the work, then increase in total energy = 1.5 x 279227.1166 = 418840.675 J
So, total energy of the body at the lowest point when it is just about to hit the ground
= Energy at the highest point + 418840.675 = 344875.96 + 418840.675 = 763716.635 J
Since the potential energy at the ground is zero, All of it is KE.
So, 0.5 mV2 = 763716.635
0.5 x 44 x V2 = 763716.635
V = 186.3179876 m/s
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.