1.) The Earth can be approximated as a sphere of mass 6.0 x 10^24 kg and radius
ID: 1506669 • Letter: 1
Question
1.) The Earth can be approximated as a sphere of mass 6.0 x 10^24 kg and radius of 6.4 x 10^6 m. What is the rotational inertia of the Earth?
a.) 2.4 x 10^38 kg m2 b.) 1.2 x 10^38 kg m2 c.) 4.9 x 10^37 kg m2 d.) 9.8 x 10^37 kg m2
2.) What is the linear velocity of a point on the Earth's Equator as the Earth spins about its axis?
a.) 1047 m/s b.) 465 m/s c.) 370 m/s d.) 55 mph e.) 0 m/s
3.) What is the rotational kinetic energy of the Earth as it rotates about its axis?
a.) 2.6 x 10^29 J b.) 3.7 x 10^30 J c.) 7.1 x 10^33 J d.) 9.6 x 10^47 J e.) 7.27 x 10^-5 J
4.) What is the angular momentum of the Earth as it rotates about its axis?
a.) 2.6 x 10^29 kg m2/s b.) 3.7 x 10^30 kg m2/s c.) 7.1 x 10^33 kg m2/s d.) 9.6 x 10^47 kg m2/s e.) 7.27 x 10^-5 kg m2/s
5.) The Earth rotates counterclockwise when viewed looking down into the North Geographic Pole. The angular momentum vector desccribing the Earth's rotation points:
a.) up through the North Pole along the Earth's axis b.) counterclockwise around the Earth's Equator c.) down through the South Pole along the Earth's axis
Explanation / Answer
1)
I = (2/5)*m*R^2
I = (2/5)*6*10^24*(6.4*10^6)^2
I = 9.8*10^37 kg m^2
option (d)
(2)
v = R*w = R*2pi/T
v = 6.4*10^6*2*pi/(24*60*60)
v = 465 m/s
option (b)
++++++++++++
(3)
KEr = 0.5*I*w^2
w = v/R
KEr= 0.5*(2/5)*m*R^2*v^2/R^2
KEr = (1/5)*m*v^2
KEr = (1/5)*(1/5)*6*10^24*465^2^2
KEr = 2.6810^29 J
option (a)
++++++++++
4)
L = I*w = (2/5)*m*R^2*v/R
L = (2/5)*m*R*v
L = (2/5)*6*10^24*6.4*10^6*465
L = 7.1*10^33kg m^2/s
++++++++++
(5)
a.) up through the North Pole along the Earth's axis
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.