Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Gravitation: An artificial satellite of 1, 200Kg orbiting the Earth completes ea

ID: 1500161 • Letter: G

Question

Gravitation: An artificial satellite of 1, 200Kg orbiting the Earth completes each orbit in 131 minutes. The radius of the Earth is 6.38 Times 10^6 m. The mass of the Earth is 5.98 Times 10^24 kg. G = 6.67 Times 10^-11N m^2 kg^-2 Find the altitude of the satellite, i.e. its distance to the Earth surface. Kepler's 3^rd Law: T^2 = (4 pi ^2/GM)r^3 What is the value of g at the location of this satellite? Equate centripetal force and gravity F_cen = m v^2/r' F_g = mg Find the orbital speed of the satellite in m/s. v = 2 pi r/T Find the gravitational potential energy of the satellite. V_G= -G mM/r

Explanation / Answer

a)    Here, (131 * 60)2 = (4 * 3.14 * 3.14 * r3)/(6.67 * 10-11 * 5.98 * 1024)

=> r   = 8.549 * 106 m

=> altitude of satelite = 8.549 * 106 - 6.38 * 106

                                    =    2.169 * 106 m

b)   value of g = (6.67 * 10-11 * 5.98 * 1024)/(8.549 * 106)2

                                   = 5.457 m/sec2

c)   orbital speed of satellite = (2 * 3.14 * 8.549 * 106)/(131 * 60)

                                              =   6830.5 m/sec

d)   gravitational potential energy = (6.67 * 10-11 * 5.98 * 1024 * 1200)/(8.549 * 106)

                                                    =   5.6 * 1010 J