A block with velocity v>0 slides along the floor (with no friction). It hits an
ID: 1469096 • Letter: A
Question
A block with velocity v>0 slides along the floor (with no friction). It hits an ideal spring at time t=0 (configuration #1). The spring starts to compress until the block comes to a (momentary) stop (configuration #2). (Figure 1) (Later, the spring will of course expand, pushing the block back). Here we show you some plots relating to the motion of the block and spring. You will need to identify what these plots represent. In each plot, the point we label as "1" refers to configuration #1 (when the block first comes in contact with the spring). The point we label "2" refers to configuration #2 (which is the moment the block comes to rest, with the spring fully compressed). Here, "force" refers to the x-component of the force of the spring on the block and "position" (and "velocity") refer to the x-components of the position (and velocity) of the block. In all cases, consider the origin to be (0,0); that is, the x-axis represents y=0 and the y-axis represents x=0.
Part A
Look first a t graph A. (Figure 2)
Which of the choices given could this graph represent?
1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position
Part B
Now look at graph B. (Figure 3)
Which of the choices given could this graph represent?
1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position
Part C
Next look at graph C. (Figure 4)
Which of the choices given could this graph represent?
1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position
Explanation / Answer
Part A
1) position vs time
Part B
4. force (F) vs. position
Part C
2. velocity (v) vs. time
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.