Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An object of mass 3M, moving in the +x direction at speed vo, breaks into two pi

ID: 1445200 • Letter: A

Question

An object of mass 3M, moving in the +x direction at speed vo, breaks into two pieces of mass M and 2M as shown in the figure below. theta_1 = 49.0 degree and theta_2 = 34.0 degree, determine the final velocities of the resulting pieces in terms of vo. v_0. Determine the x component of the velosity of the smaller piece v1_x in terms of v_0. (Express your answer to three significant figures.) Determine the y component of the velosity of the smaller piece v1_y in terms of v_0 (Express your answer to three significant figures.) Determine the x component of the velosity of the larger piece V_2x in terms of v_0 (Express your answer to three significant figures.) Determine the y component of the velosity of the larger piece V_2y,n terms of v_0 (Express your answer to three significant figures.)

Explanation / Answer

x direction:

(3M) v0 = M v1 cos(B1) + (2M) v2 cos(B2)

cancel M:

3 v0 = v1 cos(B1) + 2 v2 cos(B2)

Solve for v2:

v2 = (2 cos(B2)) (3 v0 - v1 cos(B1))

v2 = (2 cos(34)) (3 v0 - v1 cos(49))

v2 = (1.6581) (3 v0 - (0.65606) v1)

y direction:

v1 sin(B1) = v2 sin(B2)

v1 sin(49) = v2 sin(34)

v1 (0.75471) = v2 (0.55919)

v1 = (0.74094) v2

v1 = (0.74094) ((1.6581) (3 v0 - (0.65606) v1))

v1 = (0.74094) ((1.6581) (3 v0 - (0.65606) v1))

v1 = (3.6857) v0 - (0.8060) v1

==> v1 = (3.6857)/(1.8060) v0

==> v1 = 2.0408 v0

x component:

v1x = v1 cos(B1) = (2.0408 v0) cos(49) = 1.34 v0

-------------------------------------

b)

y component:

v1y = v1 sin(B1) = (2.0408 v0) sin(49) = 1.54 v0

------------------------------------

c)

v2 = (1.6581) (3 v0 - (0.65606) v1)

v2 = (1.6581) (3 v0 - (0.65606) (2.0408 v0))

v2 = 2.7543 v0

x direction:

v2x = v2 cos(B2) = (2.7543 v0) cos(34) = 2.28 v0

-------------------------------------

d)

v2y = v2 sin(B2) = (2.7543 v0) sin(34) = 1.54 v0

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote